linear dynamical systems
Recently Published Documents


TOTAL DOCUMENTS

798
(FIVE YEARS 121)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 1-20
Author(s):  
Shaull Almagor ◽  
Dmitry Chistikov ◽  
Joël Ouaknine ◽  
James Worrell

Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.


2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-25
Author(s):  
Toghrul Karimov ◽  
Engel Lefaucheux ◽  
Joël Ouaknine ◽  
David Purser ◽  
Anton Varonka ◽  
...  

We consider the MSO model-checking problem for simple linear loops, or equivalently discrete-time linear dynamical systems, with semialgebraic predicates (i.e., Boolean combinations of polynomial inequalities on the variables). We place no restrictions on the number of program variables, or equivalently the ambient dimension. We establish decidability of the model-checking problem provided that each semialgebraic predicate either has intrinsic dimension at most 1, or is contained within some three-dimensional subspace. We also note that lifting either of these restrictions and retaining decidability would necessarily require major breakthroughs in number theory.


Author(s):  
Mohammad Al-Shudeifat ◽  
Adnan Saeed

Abstract The frequency-energy plots (FEPs) of two-degree-of-freedom linear structures attached to a piecewise nonlinear energy sink (PNES) are generated here and thoroughly investigated. This study provides the FEP analysis of such systems for further understanding to nonlinear targeted energy transfer (TET) by the PNES. The attached PNES to the considered linear dynamical systems incorporates a symmetrical clearance zone of zero stiffness content where the boundaries of the zone are coupled with the linear structure by linear stiffness elements. In addition, linear viscous damping is selected to be continuous during the PNES mass oscillation. The underlying nonlinear dynamical behaviour of the considered structure-PNES systems is investigated by generating the fundamental backbone curves of the FEP and the bifurcated subharmonic resonance branches using numerical continuation methods. Accordingly, interesting dynamical behaviour of the nonlinear normal modes (NNMs) of the structure-PNES system on different backbones and subharmonic resonance branches has been observed. In addition, the imposed wavelet transform frequency spectrums on the FEPs have revealed that the TET takes place in multiple resonance captures where it is dominated by the nonlinear action of the PNES.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Jan Kyzioł ◽  
Andrzej Okniński

In this paper, we study the bifurcations of non-linear dynamical systems. We continue to develop the analytical approach, permitting the prediction of the bifurcation of dynamics. Our approach is based on implicit (approximate) amplitude-frequency response equations of the form FΩ,A;c̲=0, where c̲ denotes the parameters. We demonstrate that tools of differential geometry make possible the discovery of the change of differential properties of solutions of the equation FΩ,A;c̲=0. Such qualitative changes of the solutions of the amplitude-frequency response equation, referred to as metamorphoses, lead to qualitative changes of dynamics (bifurcations). We show that the analytical prediction of metamorphoses is of great help in numerical simulation.


2022 ◽  
Author(s):  
Gergely Szlobodnyik ◽  
Gábor Szederkényi

In this paper we investigate realizability of discrete time linear dynamical systems (LDSs) in fixed state space dimension. We examine whether there exist different Θ = (A,B,C,D) state space realizations of a given Markov parameter sequence Y with fixed B, C and D state space realization matrices. Full observation is assumed in terms of the invertibility of output mapping matrix C. We prove that the set of feasible state transition matrices associated to a Markov parameter sequence Y is convex, provided that the state space realization matrices B, C and D are known and fixed. Under the same conditions we also show that the set of feasible Metzler-type state transition matrices forms a convex subset. Regarding the set of Metzler-type state transition matrices we prove the existence of a structurally unique realization having maximal number of non-zero off-diagonal entries. Using an eigenvalue assignment procedure we propose linear programming based algorithms capable of computing different state space realizations. By using the convexity of the feasible set of Metzler-type state transition matrices and results from the theory of non-negative polynomial systems, we provide algorithms to determine structurally different realization. Computational examples are provided to illustrate structural non-uniqueness of network-based LDSs.


Meccanica ◽  
2021 ◽  
Author(s):  
Luigi Romano ◽  
Francesco Timpone ◽  
Fredrik Bruzelius ◽  
Bengt Jacobson

AbstractThis paper establishes new analytical results in the mathematical theory of brush tyre models. In the first part, the exact problem which considers large camber angles is analysed from the perspective of linear dynamical systems. Under the assumption of vanishing sliding, the most salient properties of the model are discussed with some insights on concepts as existence and uniqueness of the solution. A comparison against the classic steady-state theory suggests that the latter represents a very good approximation even in case of large camber angles. Furthermore, in respect to the classic theory, the more general situation of limited friction is explored. It is demonstrated that, in transient conditions, exact sliding solutions can be determined for all the one-dimensional problems. For the case of pure lateral slip, the investigation is conducted under the assumption of a strictly concave pressure distribution in the rolling direction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Antun Skanata ◽  
Edo Kussell

AbstractBacterial defenses against phage, which include CRISPR-mediated immunity and other mechanisms, can carry substantial growth rate costs and can be rapidly lost when pathogens are eliminated. How bacteria preserve their molecular defenses despite their costs, in the face of variable pathogen levels and inter-strain competition, remains a major unsolved problem in evolutionary biology. Here, we present a multilevel model that incorporates biophysics of molecular binding, host-pathogen population dynamics, and ecological dynamics across a large number of independent territories. Using techniques of game theory and non-linear dynamical systems, we show that by maintaining a non-zero failure rate of defenses, hosts sustain sufficient levels of pathogen within an ecology to select against loss of the defense. This resistance switching strategy is evolutionarily stable, and provides a powerful evolutionary mechanism that maintains host-pathogen interactions, selects against cheater strains that avoid the costs of immunity, and enables co-evolutionary dynamics in a wide range of systems.


Sign in / Sign up

Export Citation Format

Share Document