Asymptotically stable periodic orbits of a coupled electromechanical system

2014 ◽  
Vol 78 (1) ◽  
pp. 29-35 ◽  
Author(s):  
M. J. H. Dantas ◽  
R. Sampaio ◽  
R. Lima
2017 ◽  
Vol 27 (12) ◽  
pp. 1730042 ◽  
Author(s):  
David J. W. Simpson

As the parameters of a piecewise-smooth system of ODEs are varied, a periodic orbit undergoes a bifurcation when it collides with a surface where the system is discontinuous. Under certain conditions this is a grazing-sliding bifurcation. Near grazing-sliding bifurcations, structurally stable dynamics are captured by piecewise-linear continuous maps. Recently it was shown that maps of this class can have infinitely many asymptotically stable periodic solutions of a simple type. Here this result is used to show that at a grazing-sliding bifurcation an asymptotically stable periodic orbit can bifurcate into infinitely many asymptotically stable periodic orbits. For an abstract ODE system the periodic orbits are continued numerically revealing subsequent bifurcations at which they are destroyed.


Author(s):  
Björn Schenke ◽  
Viktor Avrutin ◽  
Michael Schanz

In this work, we investigate a piecewise-linear discontinuous scalar map defined on three partitions. This map is specifically constructed in such a way that it shows a recently discovered bifurcation scenario in its pure form. Owing to its structure on the one hand and the similarities to the nested period-adding scenario on the other hand, we denoted the new bifurcation scenario as nested period-incrementing bifurcation scenario. The new bifurcation scenario occurs in several physical and electronical systems but usually not isolated, which makes the description complicated. By isolating the scenario and using a suitable symbolic description for the asymptotically stable periodic orbits, we derive a set of rules in the space of symbolic sequences that explain the structure of the stable periodic domain in the parameter space entirely. Hence, the presented work is a necessary step for the understanding of the more complicated bifurcation scenarios mentioned above.


AIAA Journal ◽  
1968 ◽  
Vol 6 (7) ◽  
pp. 1301-1304 ◽  
Author(s):  
RONALD KOLENKIEWICZ ◽  
LLOYD CARPENTER

1996 ◽  
Vol 06 (04) ◽  
pp. 725-735 ◽  
Author(s):  
ALEXANDER Yu. LOSKUTOV ◽  
VALERY M. TERESHKO ◽  
KONSTANTIN A. VASILIEV

We consider one-dimensional maps, the logistic map and an exponential map, in those sets of parameter values which correspond to their chaotic dynamics. It is proven that such dynamics may be stabilized by a certain cyclic parametric transformation operating strictly within the chaotic set. The stabilization is a result of the creation of stable periodic orbits in the initially chaotic maps. The period of these stable orbits is a multiple of the period of the cyclic transformation. It is shown that stabilized behavior cannot be destroyed by a weak noise smearing of the required parameter values. The regions where the behavior stabilization takes place are numerically estimated. Periods of the created stabile periodic orbits are calculated.


Sign in / Sign up

Export Citation Format

Share Document