Thermodynamics of the one-dimensional multicomponent Fermi gas with a delta -function interaction

1993 ◽  
Vol 5 (32) ◽  
pp. 5869-5886 ◽  
Author(s):  
P Schlottmann
2015 ◽  
Vol 1 (6) ◽  
pp. e1500197 ◽  
Author(s):  
Jesper Levinsen ◽  
Pietro Massignan ◽  
Georg M. Bruun ◽  
Meera M. Parish

A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights because they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. We propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount.


Author(s):  
Francisco Marcelo Fernandez

Abstract We obtain accurate eigenvalues of the one-dimensional Schr\"{o}dinger equation with a Hamiltonian of the form $H_{g}=H+g\delta (x)$, where $\delta (x)$ is the Dirac delta function. We show that the well known Rayleigh-Ritz variational method is a suitable approach provided that the basis set takes into account the effect of the Dirac delta on the wavefunction. Present analysis may be suitable for an introductory course on quantum mechanics to illustrate the application of the Rayleigh-Ritz variational method to a problem where the boundary conditions play a relevant role and have to be introduced carefully into the trial function. Besides, the examples are suitable for motivating the students to resort to any computer-algebra software in order to calculate the required integrals and solve the secular equations.


Sign in / Sign up

Export Citation Format

Share Document