fermi gas
Recently Published Documents


TOTAL DOCUMENTS

1817
(FIVE YEARS 172)

H-INDEX

101
(FIVE YEARS 9)

Author(s):  
G. Gouraud ◽  
Pierre Le Doussal ◽  
Gregory Schehr

Abstract The hole probability, i.e., the probability that a region is void of particles, is a benchmark of correlations in many body systems. We compute analytically this probability P (R) for a sphere of radius R in the case of N noninteracting fermions in their ground state in a d-dimensional trapping potential. Using a connection to the Laguerre-Wishart ensembles of random matrices, we show that, for large N and in the bulk of the Fermi gas, P (R) is described by a universal scaling function of kF R, for which we obtain an exact formula (kF being the local Fermi wave-vector). It exhibits a super exponential tail P (R) / e-κd(kF R)d+1 where κdis a universal amplitude, in good agreement with existing numerical simulations. When R is of the order of the radius of the Fermi gas, the hole probability is described by a large deviation form which is not universal and which we compute exactly for the harmonic potential. Similar results also hold in momentum space.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Khalid Hossain ◽  
Konrad Kobuszewski ◽  
Michael McNeil Forbes ◽  
Piotr Magierski ◽  
Kazuyuki Sekizawa ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuyuki Hatsuda ◽  
Tadashi Okazaki

We analytically study the Fermi-gas formulation of sphere correlation functions of the Coulomb branch operators for 3d \mathcal{N}=4𝒩=4 ADHM theory with a gauge group U(N)U(N), an adjoint hypermultiplet and ll hypermultiplets which can describe a stack of NN M2-branes at A_{l-1}Al−1 singularities. We find that the leading coefficients of the perturbative grand canonical correlation functions are invariant under a hidden triality symmetry conjectured from the twisted M-theory. The triality symmetry also helps us to fix the next-to-leading corrections analytically.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Yijia Zhou ◽  
Rejish Nath ◽  
Haibin Wu ◽  
Igor Lesanovsky ◽  
Weibin Li

Author(s):  
Filippo Pascucci ◽  
Andrea Perali ◽  
Luca Salasnich

We calculate the parameters of the Ginzburg–Landau (GL) equation of a three-dimensional attractive Fermi gas around the superfluid critical temperature. We compare different levels of approximation throughout the Bardeen–Cooper–Schrieffer (BCS) to the Bose–Einstein Condensate (BEC) regime. We show that the inclusion of Gaussian fluctuations strongly modifies the values of the Ginzburg–Landau parameters approaching the BEC regime of the crossover. We investigate the reliability of the Ginzburg–Landau theory, with fluctuations, studying the behavior of the coherence length and of the critical rotational frequencies throughout the BCS-BEC crossover. The effect of the Gaussian fluctuations gives qualitative correct trends of the considered physical quantities from the BCS regime up to the unitary limit of the BCS-BEC crossover. Approaching the BEC regime, the Ginzburg–Landau equation with the inclusion of Gaussian fluctuations turns out to be unreliable.


Author(s):  
A. G. Magner ◽  
A. I. Sanzhur ◽  
S. N. Fedotkin ◽  
A. I. Levon ◽  
S. Shlomo

Level density [Formula: see text] is derived for a nuclear system with a given energy [Formula: see text], neutron [Formula: see text], and proton [Formula: see text] particle numbers, within the semiclassical extended Thomas–Fermi and periodic-orbit theory beyond the Fermi-gas saddle-point method. We obtain [Formula: see text], where [Formula: see text] is the modified Bessel function of the entropy [Formula: see text], and [Formula: see text] is related to the number of integrals of motion, except for the energy [Formula: see text]. For small shell structure contribution one obtains within the micro–macroscopic approximation (MMA) the value of [Formula: see text] for [Formula: see text]. In the opposite case of much larger shell structure contributions one finds a larger value of [Formula: see text]. The MMA level density [Formula: see text] reaches the well-known Fermi gas asymptote for large excitation energies, and the finite micro-canonical limit for low excitation energies. Fitting the MMA [Formula: see text] to experimental data on a long isotope chain for low excitation energies, due mainly to the shell effects, one obtains results for the inverse level density parameter [Formula: see text], which differs significantly from that of neutron resonances.


2021 ◽  
Author(s):  
Samir Das ◽  
Shyamal Biswas

Abstract We have analytically explored the quantum phenomena of particle scattering by rotating trapped quantum gases of electrically neutral bosons and fermions for the short-ranged Fermi-Huang interactions between the incident particle and the scatterers. We have predicted differential scattering cross-sections and their temperature and angular velocity dependencies in this regard, in particular, for an ideal Bose gas in a rotating harmonic trap, an ideal Fermi gas in a rotating harmonic trap, and a weakly interacting Bose gas in a slow rotating harmonic trap. We have theoretically probed the lattice-pattern of the vortices in a rapidly rotating strongly interacting Bose-Einstein condensate by the particle scattering method. We also have obtained de Haas-van Alphen-like oscillations in the differential scattering cross-section for an ideal ultracold Fermi gas in a rotating harmonic trap. Our predictions on the differential scattering cross-sections can be tested within the present-day experimental setups.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Jakub Kopyciński ◽  
Wojciech R. Pudelko ◽  
Gabriel Wlazłowski

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Xiang-Pei Liu ◽  
Xing-Can Yao ◽  
Youjin Deng ◽  
Yu-Xuan Wang ◽  
Xiao-Qiong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document