basis set
Recently Published Documents


TOTAL DOCUMENTS

4088
(FIVE YEARS 915)

H-INDEX

131
(FIVE YEARS 10)

2022 ◽  
Vol 23 (2) ◽  
pp. 939
Author(s):  
Alexey V. Eroshin ◽  
Arseniy A. Otlyotov ◽  
Ilya A. Kuzmin ◽  
Pavel A. Stuzhin ◽  
Yuriy A. Zhabanov

The electronic and molecular structures of metal-free tetrabenzoporphyrin (H2TBP) and its complexes with zinc, cadmium, aluminum, gallium and indium were investigated by density functional theory (DFT) calculations with a def2-TZVP basis set. A geometrical structure of ZnTBP and CdTBP was found to possess D4h symmetry; AlClTBP, GaClTBP and InClTBP were non-planar complexes with C4v symmetry. The molecular structure of H2TBP belonged to the point symmetry group of D2h. According to the results of the natural bond orbital (NBO) analysis, the M-N bonds had a substantial ionic character in the cases of the Zn(II) and Cd(II) complexes, with a noticeably increased covalent contribution for Al(III), Ga(III) and In(III) complexes with an axial –Cl ligand. The lowest excited states were computed with the use of time-dependent density functional theory (TDDFT) calculations. The model electronic absorption spectra indicated a weak influence of the nature of the metal on the Q-band position.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jessica Halliday ◽  
Emilio Artacho

Known force terms arising in the Ehrenfest dynamics of quantum electrons and classical nuclei, due to a moving basis set for the former, can be understood in terms of the curvature of the manifold hosting the quantum states of the electronic subsystem. Namely, the velocity-dependent terms appearing in the Ehrenfest forces on the nuclei acquire a geometrical meaning in terms of the intrinsic curvature of the manifold, while Pulay terms relate to its extrinsic curvature.


Author(s):  
Shanggeng Li ◽  
Fanghua Zhu ◽  
Yawen Zhou ◽  
Jiaming Hu ◽  
Jing Li ◽  
...  

First-principles exploration is very important to molecular design. In this study, geometric structure, intramolecular charge transfer (ICT), energy levels, polar moment, and ultraviolet–visible (UV–Vis) spectroscopy of eight novel and different alkynyl bridged thiophene modified coumarin nonlinear optical molecules with [Formula: see text]-[Formula: see text]-[Formula: see text] and [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] structures had been studied by density-functional theory (DFT) calculations within B3LYP hybrid functional using 6-31 [Formula: see text], [Formula: see text] Gaussian type molecular-orbital basis set. This has guiding significance for the design of nonlinear optical molecules and the development of coumarin-based photoelectric molecules.


Author(s):  
Nguyen Huu Tho ◽  
Pham Hong Cam

The geometries, stabilities and electronic properties of vanadium-doped germanium clusters GenV0/+ (n=2-8) were systematically investigated by using density functional theory (DFT) at the PBE level and the 6-311+G(d) basis set. The results show that the geometries of lowest-energy structures of the cationic clusters are only significant different from those of the neutral at n = 6 or 7. The ground state of neutral clusters is a doublet, except Ge2V which is a quartet while that of cationic clusters is a triplet, except Ge8V+, which is a singlet. The average binding energy values generally increase with increasing cluster size. The results from average binding energies showed that it is more stable for the cationic than neutral clusters at the same size. Furthermore, the calculated values of fragmentation energy, second-order energy difference, HOMO-LUMO gap and adiabatic ionization potential suggest that the neutral clusters possess higher stability when n = 2, 5, 8 and the cations are more stable when n = 2, 3, 5 and 6.


2022 ◽  
Author(s):  
nambury surendra babu ◽  
Irene Octavian Riwa

Abstract The current study examined a series of 1,3,5-tris (diphenylamino) benzene derivatives used as hole transport materials in perovskite solar cells (HTM1-HTM9). DFT and TD/DFT with the B3LYP/6-311G basis set used for all calculations. The ground state geometry, frontier molecular orbital (FMO), photoelectric properties and reorganization energies and the absorption spectra were investigated. The energy levels of HOMO and LUMO orbitals were calculated for HTM1-HTM9, compared to all of the compounds under investigation and the spiro-OMeTAD, HTM 8 has the lowest HOMO energy level, indicating a favourable overlap with the MAPbI3 perovskite active layer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rameshwar K. Dongare ◽  
Shaukatali N. Inamdar ◽  
Radhakrishnan M. Tigote

Herein, we report the density functional study of benzoyl thiourea derivatives linked to morpholine and piperidine to evaluate their antifungal activity. Overall six compounds BTP 1-3 and BTM 4-6 were optimized with DFT using the B3LYP method with 6-31G(d,p) basis set. The molecular geometry, bond lengths, bond angles, atomic charges and HOMO-LUMO energy gap have been investigated. The structural parameters have been compared with the reported experimental results and structure- antifungal activity relationship is explored in details. The calculated results from DFT were discussed using all Quantum chemical parameters of the compounds. Introduction: Benzoyl thiourea derivatives linked with morpholine and piperidine were reported to have good antifungal activity. Objective: To find the correlations between the quantum chemical calculations and the antifungal activity for the benzoyl thiourea derivatives linked with morpholine and piperidine. Method: Optimization was carried out with DFT using B3LYP method utilizing 6-31G(d,p) basis set. Results: A good correlation between the quantum chemical calculations and the antifungal activity for the benzoyl thiourea derivatives linked with morpholine and piperidine was found. Conclusion: The DFT study of benzoyl thiourea derivatives linked to morpholine and piperidine was evaluated for their antifungal activity and it showed good correlations of activity with the quantum chemical parameters.


Author(s):  
Lemi Türker

Dinitrohydrazines and interaction of them with some group-II metals have been considered within the restrictions of density functional theory and the basis set applied (B3LYP/6-311++G(d,p)). Dinitrohydrazine has two isomers as geminal and vicinal. The calculations reveal that both of them are structurally stable. The vicinal form electronically is more stable and thermo chemically more favorable than the other isomer. The beryllium magnesium and calcium (1:1) composites of them are considered. The results indicate that only the beryllium composites (geminal and vicinal) are structurally intact while the others undergo decomposition due to reductive cleavage by the metals. The decompositions occurred exhibit variations from one composite to the other.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Deyang Yu ◽  
YangYang Hu ◽  
Guiling Zhang ◽  
Weiqi Li ◽  
Yongyuan Jiang

AbstractSemiconductor clusters, ZnnOn, ZnnSn, and CdnSn (n = 2–8), were optimized and the corresponding stable structures were acquired. The symmetry, bond length, bond angle, and energy gap between HOMO and LUMO were analyzed. According to reasonable calculation and comparative analysis for small clusters Zn2O2, Zn2S2, and Cd2S2, an effective method based on density function theory (DFT) and basis set which lay the foundation for the calculation of the large clusters have been obtained. The two-photon absorption (TPA) results show that for the nano clusters with planar configuration, sizes play important role on the TPA cross section, while symmetries determine the TPA cross section under circumstance of 3D stable structures. All our conclusions provide theoretical support for the development of related experiments.


2022 ◽  
Author(s):  
Jesse I Gilmer ◽  
Michael A Farries ◽  
Zachary P Kilpatrick ◽  
Ioannis Delis ◽  
Abigail L Person

Learning plays a key role in the function of many neural circuits. The cerebellum is considered a learning machine essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellar input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning outcomes has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from naturalistic inputs, in contrast to traditional classification tasks. The model robustly produced temporal basis sets from naturalistic inputs, and the resultant GCL output supported learning of temporally complex target functions. Learning favored surprisingly dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. Moreover, different cerebellar tasks were supported by diverse pattern separation features that matched the demands of the tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that population statistics of granule cell activity may differ across cerebellar regions to support distinct behaviors.


Sign in / Sign up

Export Citation Format

Share Document