scholarly journals Waveform prototype-based feature learning for automatic detection of the early repolarization pattern in ECG signals

2018 ◽  
Vol 39 (11) ◽  
pp. 115010
Author(s):  
Marcela Tobón-Cardona ◽  
Tuomas Kenttä ◽  
Kimmo Porthan ◽  
Jani T Tikkanen ◽  
Lasse Oikarinen ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 1125
Author(s):  
Htet Myet Lynn ◽  
Pankoo Kim ◽  
Sung Bum Pan

In this report, the study of non-fiducial based approaches for Electrocardiogram(ECG) biometric authentication is examined, and several excessive techniques are proposed to perform comparative experiments for evaluating the best possible approach for all the classification tasks. Non-fiducial methods are designed to extract the discriminative information of a signal without annotating fiducial points. However, this process requires peak detection to identify a heartbeat signal. Based on recent studies that usually rely on heartbeat segmentation, QRS detection is required, and the process can be complicated for ECG signals for which the QRS complex is absent. Thus, many studies only conduct biometric authentication tasks on ECG signals with QRS complexes, and are hindered by similar limitations. To overcome this issue, we proposed a data-independent acquisition method to facilitate highly generalizable signal processing and feature learning processes. This is achieved by enhancing random segmentation to avoid complicated fiducial feature extraction, along with auto-correlation to eliminate the phase difference due to random segmentation. Subsequently, a bidirectional recurrent neural network (RNN) with long short-term memory (LSTM) deep networks is utilized to automatically learn the features associated with the signal and to perform an authentication task. The experimental results suggest that the proposed data-independent approach using a BLSTM network achieves a relatively high classification accuracy for every dataset relative to the compared techniques. Moreover, it exhibited a significantly higher accuracy rate in experiments using ECG signals without the QRS complex. The results also revealed that data-dependent methods can only perform well for specified data types and amendments of data variations, whereas the presented approach can also be considered for generalization to other quasi-periodical biometric signal-based classification tasks in future studies.


Author(s):  
Zhiyong Wu ◽  
Xiangqian Ding ◽  
Guangrui Zhang

In this paper, a novel approach based on deep belief networks (DBN) for electrocardiograph (ECG) arrhythmias classification is proposed. The construction process of ECG classification model consists of two steps: features learning for ECG signals and supervised fine-tuning. In order to deeply extract features from continuous ECG signals, two types of restricted Boltzmann machine (RBM) including Gaussian–Bernoulli and Bernoulli–Bernoulli are stacked to form DBN. The parameters of RBM can be learned by two training algorithms such as contrastive divergence and persistent contrastive divergence. A suitable feature representation from the raw ECG data can therefore be extracted in an unsupervised way. In order to enhance the performance of DBN, a fine-tuning process is carried out, which uses backpropagation by adding a softmax regression layer on the top of the resulting hidden representation layer to perform multiclass classification. The method is then validated by experiments on the well-known MIT-BIH arrhythmia database. Considering the real clinical application, the inter-patient heartbeat dataset is divided into two sets and grouped into four classes (N, S, V, F) following the recommendations of AAMI. The experiment results show our approach achieves better performance with less feature learning time than traditional hand-designed methods on the classification of ECG arrhythmias.


2021 ◽  
Author(s):  
Zuogang Shang ◽  
Zhibin Zhao ◽  
Hui Fang ◽  
Samuel Relton ◽  
Darcy Murphy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document