Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics

2019 ◽  
Vol 61 (4) ◽  
pp. 044001 ◽  
Author(s):  
F Haas
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chitrita Dasgupta ◽  
Sarit Maitra

Abstract Vortex motion of a cylindrical quantum plasma containing degenerate inertialess electrons and strongly correlated, non-degenerate inertial ions is studied. The electron exchange–correlation and ion–neutral collisional effects are taken into consideration, along with vertical external magnetic field and radial electric field. Considering generalized viscoelastic momentum equation for strongly coupled ions in quasi-crystalline state, variation of different rotational characteristics along radial distance are discussed numerically. Existence of shear rotation is observed near both the core and the periphery of the vortex, which is found to be modified by ion–ion correlation, quantum effects of the degenerate electrons, the ion–neutral collision, as well as by the magnetic field. It is noticed that electron exchange–correlation potential and quantum diffraction play major roles in modifying the rotational characteristics. Vorticity and the rate of increment of enstrophy with respect to radial distance, diminish to zero towards the periphery of the vortex. Also, it is noted that the ion–neutral collision may be responsible for reducing the increment of enstrophy.


Sign in / Sign up

Export Citation Format

Share Document