Plasma Physics and Controlled Fusion
Latest Publications





Published By Iop Publishing

1361-6587, 0741-3335

Svetlana Ratynskaia ◽  
Ladislas Vignitchouk ◽  
Panagiotis Tolias

Abstract The design, licensing and operation of magnetic confinement fusion reactors impose various limitations on the amount of metallic dust particles residing inside the plasma chamber. In this context, predictive studies of dust production and migration constitute one of the main sources of relevant data. These are mainly conducted using dust transport codes, which rely on coupled dust-plasma and dust-wall interaction models, and require external input on the dust and droplet initial conditions. Some particularities of dust modelling in reactor-relevant conditions are analyzed with an emphasis on dust generation mechanisms relevant for disruption scenarios and on dust remobilization mechanisms relevant for ramp-up scenarios. Emerging topics such as dust production by runaway electron impact and pre-plasma remobilization of magnetic dust are also discussed.

Maria Pia Valdivia Leiva ◽  
Gilbert W Collins IV ◽  
Fabio Conti ◽  
Farhat Beg

Abstract Talbot-Lau X-ray Deflectometry (TXD) enables refraction-based imaging for high-energy-density physics (HEDP) experiments, and thus, it has been studied and developed with the goal of diagnosing plasmas relevant to Inertial Confinement and Magnetic Liner Inertial Fusion. X-pinches, known for reliably generating fast (~1 ns), small (~1 µm) x-ray sources, were driven on the compact current driver GenASIS (~200 kA, 150 ns) as a potential backlighter source for TXD. Considering that different X-pinch configurations have characteristic advantages and drawbacks as x-ray generating loads, three distinct copper X-pinch configurations were studied: the wire X-pinch, the hybrid X-pinch, and the laser-cut X-pinch. The Cu K-shell emission from each configuration was characterized and analyzed regarding the specific backlighter requirements for an 8 keV TXD system: spatial and temporal resolution, number of sources, time of emission, spectrum, and reproducibility. Recommendations for future experimental improvements and applications are presented. The electron density of static objects was retrieved from Moiré images obtained through TXD. This allowed to calculate the mass density of static samples within 4% of the expected value for laser-cut X-pinches, which were found to be the optimal X-pinch configuration for TXD due to their high reproducibility, small source size (≤5 µm), short duration (~1 ns FWHM), and up to 10^6 W peak power near 8 keV photon energy. Plasma loads were imaged through TXD for the first-time using laser-cut X-pinch backlighting. Experimental images were compared with simulations from the X-ray Wave-Front Propagation code, demonstrating that TXD can be a powerful x-ray refraction-based diagnostic for dense Z-pinch loads. Future plans for Talbot-Lau Interferometry diagnostics in the pulsed-power environment are described.

Patrick Maget ◽  
Pierre Manas ◽  
Jean-Francois Artaud ◽  
Clarisse Bourdelle ◽  
Jerome B Bucalossi ◽  

Abstract Achieving a successful plasma current ramp-up in a full Tungsten tokamak can be challenging due to the large core radiation (and resulting low core temperature) that can be faced with this heavy metallic impurity if its relative concentration is too high. Nitrogen injection during the plasma current ramp-up of WEST discharges greatly improves core temperature and Magneto-Hydro-Dynamic stability. Experimental measurements and integrated simulations with the RAPTOR code complemented with the Qualikiz Neural Network for computing turbulent transport allow a detailed understanding of the mechanisms at play. Increased edge radiation during this transient phase is shown to improve confinement properties, driving higher core temperature and better MHD stability. This also leads to increased operation margins with respect to Tungsten contamination.

shuyu Zheng ◽  
Debing Zhang ◽  
Erbing Xue ◽  
Limin Yu ◽  
Xianmei Zhang ◽  

Abstract High poloidal beta scenarios with favorable energy confinement (β_p~1.9, H_98y2~1.4) have been achieved on Experimental Advanced Superconducting Tokamak (EAST) using only radio frequency waves heating. Gyrokinetic simulations are carried out with experimental plasma parameters and tokamak equilibrium data of a typical high β_p discharge by the GTC code. Linear simulations show that electron temperature scale length and electron density scale length destabilize the turbulence, collision effects stabilize the turbulence, and the instability propagates in the electron diamagnetic direction. These indicate that the dominant instability in the core of high β_p plasma is collisionless trapped electron mode. Ion thermal diffusivities calculated by nonlinear gyrokinetic simulations are consistent with the experimental value, in which the electron collision effects play an important role. Further analyses show that instabilities with k_θ ρ_s>0.38 are suppressed by collision effects and collision effects reduce the radial correlation length of turbulence, resulting in the suppression of the turbulence.

Yihao Duan ◽  
Yong Xiao ◽  
Zhihong Lin

Abstract Gyro-average is a crucial operation to capture the essential finite Larmor radius effect (FLR) in gyrokinetic simulation. In order to simulate strongly shaped plasmas, an innovative multi-point average method based on non-orthogonal coordinates has been developed to improve the accuracy of the original multi-point average method in gyrokinetic particle simulation. This new gyro-average method has been implemented in the gyrokinetic toroidal code (GTC). Benchmarks have been carried out to prove the accuracy of this new method. In the limit of concircular tokamak, ion temperature gradient (ITG) instability is accurately recovered for this new method and consistency is achieved. The new gyro-average method is also used to solve the gyrokinetic Poisson equation, and its correctness has been confirmed in the long wavelength limit for realistic shaped plasmas. The improved GTC code with the new gyro-average method has been used to investigate the ITG instability with EAST magnetic geometry. The simulation results show that the correction induced by this new method in the linear growth rate is more significant for short wavelength modes where the finite Larmor radius (FLR) effect becomes important. Due to its simplicity and accuracy, this new gyro-average method can find broader applications in simulating the shaped plasmas in realistic tokamaks.

Anastasios Grigoriadis ◽  
Georgia Andrianaki ◽  
Ioannis Fitilis ◽  
Vasilis Menelaos Dimitriou ◽  
Eugene Lawrence Clark ◽  

Abstract A relativistic electron source based on high power laser interaction with gas jet targets has been developed at the Institute of Plasma Physics & Lasers of the Hellenic Mediterranean University. Initial measurements were conducted using the “Zeus” 45 TW laser with peak intensities in the range of 1018-1019 W/cm2 interacting with a He pulsed gas jet having a 0.8 mm diameter nozzle. A significant improvement of the electron signal was measured after using an absorber to improve the laser pulse contrast from 10-10 to 10-11. A high stability quasi-monoenergetic electron beam of about 50 MeV was achieved and measured using a magnetic spectrometer for pulsed gas jet backing pressure of 12 bar. Supplementary studies using a 3 mm diameter nozzle for backing pressures in the range of 35 to 40 bar showed electron beam production with energies spread in the range from 50 to 150 MeV. The pulsed jet density profile was determined using interferometric techniques. Particle-in-cell (PIC) simulations, at the above experimentally determined conditions, support our experimental findings.

Amol Holkundkar ◽  
Felix Mackenroth

Abstract We present a novel approach to analyzing phase-space distributions of electrons ponderomotively scattered off an ultra-intense laser pulse and comment on implications for thus conceivable in-situ laser-characterization schemes. To this end, we present fully relativistic test particle simulations of electrons scattered from an ultra-intense, counter-propagating laser pulse. The simulations unveil non-trivial scalings of the scattered electron distribution with the laser intensity, pulse duration, beam waist, and energy of the electron bunch. We quantify the found scalings by means of an analytical expression for the scattering angle of an electron bunch ponderomotively scattered from a counter-propagating, ultra-intense laser pulse, also accounting for radiation reaction (RR) through the Landau-Lifshitz (LL) model. For various laser and bunch parameters, the derived formula is in excellent quantitative agreement with the simulations. We also demonstrate how in the radiation-dominated regime a simple re-scaling of our model's input parameter yields quantitative agreement with numerical simulations based on the LL model.

Gianluca Pucella ◽  
Edoardo Alessi ◽  
Fulvio Auriemma ◽  
Paolo Buratti ◽  
Matteo Valerio Falessi ◽  

Abstract The analysis of the current ramp-down phase of JET plasmas has revealed the occurrence of additional magnetic oscillations in pulses characterized by large magnetic islands. The frequencies of these oscillations range from 5 kHz to 20 kHz, being well below the toroidal gap in the Alfven continuum and of the same order of the low-frequency gap opened by plasma compressibility. The additional oscillations only appear when the magnetic island width exceeds a critical threshold, suggesting that the oscillations could tap their energy from the tearing mode (TM) by a non-linear coupling mechanism. A possible role of fast ions in the excitation process can be excluded, being the pulse phase considered characterized by very low additional heating. The calculation of the coupled Alfven-acoustic continuum in toroidal geometry suggests the possibility of beta-induced Alfven eigenmodes (BAE) rather than beta-induced Alfven acoustic eigenmodes (BAAE). As a main novelty compared to previous works, the analysis of the electron temperature profiles from electron cyclotron emission has shown the simultaneous presence of magnetic islands on different rational surfaces in pulses with multiple magnetic oscillations in the low-frequency gap of the Alfven continuum. This observation supports the hypothesis of different BAE with toroidal mode number n = 1 associated with different magnetic islands. As another novelty, the observation of magnetic oscillations with n = 2 in the BAE range is reported for the first time in this work. Some pulses, characterized by slowly rotating tearing modes, exhibit additional oscillations with n = 0, likely associated with geodesic acoustic modes (GAM), and a cross-spectral bicoherence analysis has confirmed a non-linear interaction among TM, BAE and GAM, with the novelty of the observation of multiple triplets (twin BAEs plus GAM), due to the simultaneous presence of several magnetic islands in the plasma.

Daniel Wendler ◽  
Ralph Dux ◽  
Rainer Fischer ◽  
Michael Griener ◽  
Elisabeth Wolfrum ◽  

Abstract The thermal helium beam diagnostic at ASDEX Upgrade is used to infer the electron density ne and temperature Te in the scrape-off layer and the pedestal region from the emission of visible lines of the locally injected helium. The link between ne and Te and the emission is provided by a collisional radiative model, which delivers the evolution of the populations of the relevant excited states as the He atoms travel through the plasma. A computationally efficient method with just three effective states is shown to provide a good approximation of the population dynamics. It removes an artificial rise of Te at the plasma edge when using a simple static model. Furthermore, the re-absorption of the vacuum ultra-violet resonance lines has been introduced as additional excitation mechanism being mainly important in the region close to the injection point. This extra excitation leads to a much better fit of the measured line ratios in this region for larger puff rates.

Konstantin Nikolaevich Mitrofanov ◽  
Vladimir Vasil'evich Aleksandrov ◽  
Aleksadr Viktorovich Branitski ◽  
Evgenii Valentinivich Grabovskiy ◽  
Arkadii Gritsuk ◽  

Abstract The results of experiments on the study of plasma compression of nested wire arrays of mixed composition and the generation of powerful pulses of soft X-ray radiation (SXR), carried out on a powerful electrophysical facility Angara-5-1 at a current level of up to 3 MA, are presented. Based on the latest experimental data on the intensity of plasma formation of various substances m& (in μg/(cm2×ns)) [1] and on the features of the dynamics of plasma compression in nested arrays [2], a nested wire array design has been developed which makes it possible to obtain a high peak SXR power in comparison with the known designs of single and nested tungsten wire arrays. During the implosion of nested arrays of mixed composition, consisting of plastic fibers and tungsten wires, shorter and more powerful SXR pulses were obtained with a maximum peak power PSXRmax~10 TW with a FWHM duration of ~5 ns compared to the parameters of SXR pulses upon compression of single tungsten arrays: PSXRmax~5 TW and FWHM~10 ns. Thus, under the conditions of our experiments, we have shown the possibility of a twofold increase in the peak SXR power during compression of nested arrays by optimizing their design.

Sign in / Sign up

Export Citation Format

Share Document