scholarly journals Polynomials and number sets associated with the probability distribution of the hyperbolic cosine type for even values of the parameter

2021 ◽  
Vol 2052 (1) ◽  
pp. 012044
Author(s):  
M S Tokmachev

Abstract The polynomials used in the formation of the probability distribution density function of the hyperbolic cosine type are investigated. Earlier, on the basis of a hyperbolic cosine distribution, the author obtained numerical sets, among which not only new ones, but also, for example, the triangle of Stirling numbers, the triangle of the coefficients of Bessel polynomials, sequences of coefficients in the expansion of various functions, etc. In this paper, depending on the natural parameter m and the real distribution parameter β , a new class of polynomials is obtained. For even and odd m , the polynomials are constructed using similar, but different formulas. The article presents polynomials for even values m . Structurally, polynomials consist of quadratic factors. The coefficients of the polynomials, ordered by m , form numerical triangles depending on β . Some relations are found between the coefficients. From the numerical triangles, a set of numerical sequences is obtained, which for integers β are integers. Also, polynomials with respect to x turn out to be polynomials with respect to β . With this interpretation the variable acts as a parameter. New numerical triangles and sequences for different x were found. The overwhelming majority of the obtained numerical sequences are new. The class of polynomials arising from problems of probability theory indicates the possibility of applying the results.

2021 ◽  
Vol 2052 (1) ◽  
pp. 012045
Author(s):  
M S Tokmachev

Abstract The article introduces a new class of polynomials that first appeared in the probability distribution density function of the hyperbolic cosine type. With an integer change in one of the parameters of this distribution, polynomials in the form of a product of positive factors are written out with an increasing degree. Earlier, the author found a connection between the distribution of the hyperbolic cosine type and numerical sets, in particular, in the simplest cases with the triangle of coefficients of Bessel polynomials, the triangle of Stirling numbers, sequences of coefficients in the expansion of various functions, etc. Also from the distribution formed numerous numerical sequences, both new and widely known. Consideration of polynomials separately from the density function made it possible to reconstruct numerical sets of coefficients, ordered in the form of numerical triangles and numerical sequences. The connections between the elements of the sets are established. Among the sequences obtained, in the simplest cases, there are those known from others, for example, physical problems. However, the overwhelming majority of the found number sets have not been encountered earlier in the literature. The obvious applications of this research are number theory and algebra. And the interdisciplinarity of the results indicates the possibility of applications and enhances their practical significance in other areas of knowledge.


2021 ◽  
Author(s):  
A.L. Reznik ◽  
A.A. Soloviev ◽  
A.V. Torgov

In this paper, we describe algorithms for the optimal search for pulsed-point sources, and the information on their distribution is limited to single-mode functions with a stepped probability distribution density, which makes it possible to physically implement the algorithms.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012136
Author(s):  
V M Artyushenko ◽  
V I Volovach

Abstract Issues associated with methods for estimating the shape of the probability distribution density curve are analyzed in order to classify them when processing measurement results. For example, such nonparametric methods as the method of histograms and frequency polygon, as well as the method of classification of distributions, are considered. It is shown that the values of the anticurtosis and entropy coefficient can be taken as independent features of the form of symmetric distributions. For probability distribution densities that have a one-sided character, such as multiplicative noise, a skewness coefficient should be added to the parameters to consider. Recurrent procedures for obtaining current estimates of numerical characteristics of analyzed random processes are given. The results of processing a random process based on recurrent procedures are presented. It is shown that when the number of samples increases, the estimates obtained by using recurrent and non-recurrent procedures converge. The scattering of estimates of probability distribution density parameters, such as variance, relative mean square error, and entropy error, is determined.


Sign in / Sign up

Export Citation Format

Share Document