scholarly journals Modeling of the stress-strain state at the Shtokman gas condensate field accounting its block structure

2021 ◽  
Vol 2094 (2) ◽  
pp. 022015
Author(s):  
A I Kalashnik ◽  
N A Kalashnik

Abstract The stress-strain state of the Shtokman gas condensate field has been studied using mathematical modeling and accounting its block structure. It is assumed that the rock mass’s structure has a vertical block structure, which is under the influence of gravity and tectonic force fields. It has been revealed that the stress-strain state of the rocks depends essentially on relationships of initial operating efforts and in-situ gas pressure, which magnitude varies with its production; direction of the maximum forces and dip of angles of fault zones; and elastic characteristics of the main rock mass and fault zones. It has been established that the change in the dip of angle of fault zones and reducing the rocks’ stiffness increases tensile stress in the roof of a horizontal seam and near the sea bottom. A forecast assessment has been performed of the vertical displacement of a rock block contoured with faults relatively to the main rock mass.

2020 ◽  
Vol 14 (2) ◽  
pp. 85-94
Author(s):  
Roman Dychkovskyi ◽  
Iaroslav Shavarskyi ◽  
Pavlo Saik ◽  
Vasyl Lozynskyi ◽  
Volodymyr Falshtynskyi ◽  
...  

Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

The Zhdanovskoe copper-nickel sulfide ores deposit is located in the north-west of the Murmansk region and is a mineral raw material source for JSC «Kola MMC». The main mining method used is sublevel caving. In some areas, due to the complex shape of the ore bodies, the open stoping mining method is used which requires determining stable parameters of stopes and pillars. It is necessary to study the stress-strain state of the deposit to ensure safe mining conditions. One of the possible solutions is the modeling of the stress-strain state of rock mass using the finite element method, for example, CAE Fidesys, which is FEMbased software. The use of CAE Fidesys for solving geomechanics tasks allows creating models of individual excavation units to determine the stability of stopes and pillars, and large-scale models that include several ore bodies and areas of the host rock mass. The article considers solutions of both types of geomechanic tasks using CAE Fidesys for conditions of the Zhdanovskoe deposit.


1993 ◽  
Vol 29 (1) ◽  
pp. 21-26
Author(s):  
K. V. Pirlya ◽  
L. N. Gakhova ◽  
N. P. Kramskov

Sign in / Sign up

Export Citation Format

Share Document