gas condensate
Recently Published Documents


TOTAL DOCUMENTS

2568
(FIVE YEARS 607)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ali H. Alsultan ◽  
Josef R. Shaoul ◽  
Jason Park ◽  
Pacelli L. J. Zitha

Abstract Condensate banking is a major issue in the production operations of gas condensate reservoirs. Increase in liquid saturation in the near-wellbore zone due to pressure decline below dew point, decreases well deliverability and the produced condensate-gas ratio (CGR). This paper investigates the effects of condensate banking on the deliverability of hydraulically fractured wells producing from ultralow permeability (0.001 to 0.1 mD) gas condensate reservoirs. Cases where condensate dropout occurs over a large volume of the reservoir, not only near the fracture face, were examined by a detailed numerical reservoir simulation. A commercial compositional simulator with local grid refinement (LGR) around the fracture was used to quantify condensate dropout as a result of reservoir pressure decline and its impact on well productivity index (PI). The effects of gas production rate and reservoir permeability were investigated. Numerical simulation results showed a significant change in fluid compositions and relative permeability to gas over a large reservoir volume due to pressure decline during reservoir depletion. Results further illustrated the complications in understanding the PI evolution of hydraulically fractured wells in "unconventional" gas condensate reservoirs and illustrate how to correctly evaluate fracture performance in such a situation. The findings of our study and novel approach help to more accurately predict post-fracture performance. They provide a better understanding of the hydrocarbon phase change not only near the wellbore and fracture, but also deep in the reservoir, which is critical in unconventional gas condensate reservoirs. The optimization of both fracture spacing in horizontal wells and well spacing for vertical well developments can be achieved by improving the ability of production engineers to generate more realistic predictions of gas and condensate production over time.


2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


2022 ◽  
Author(s):  
Mikhail Klimov ◽  
Rinat Ramazanov ◽  
Nadir Husein ◽  
Vishwajit Upadhye ◽  
Albina Drobot ◽  
...  

Abstract The proportion of hard-to-recover reserves is currently increasing and reached more than 65% of total conventional hydrocarbon reserves. This results in an increasing number of horizontal wells put into operation. When evaluating the resource recovery efficiency in horizontal wells, and, consequently, the effectiveness of the development of gas condensate field, the key task is to evaluate the well productivity. To accomplish this task, it is necessary to obtain the reservoir fluid production profile for each interval. Conventional well logging methods with proven efficiency in vertical wells, in case of horizontal wells, will require costly asset-heavy applications such as coiled tubing, downhole tractors conveying well logging tools, and Y-tool bypass systems if pump is used. In addition, the logging data interpretation in the case of horizontal wells is less reliable due to the multiphase flow and variations of the fluid flow rate. The fluorescent-based nanomaterial production profiling surveillance technology can be used as a viable solution to this problem, which enables cheaper and more effective means of the development of hard-to-recover reserves. This technology assumes that tracers are placed downhole in various forms, such as marker tapes for lower completions, markers in the polymer coating of the proppant used for multi-stage hydraulic fracturing, and markers placed as fluid in fracturing fluid during hydraulic fracturing or acid stimulation during bottom-hole treatment. The fundamental difference between nanomaterial tracers production profiling and traditional logging methods is that the former offers the possibility to monitor the production at frac ports in the well for a long period of time with far less equipment and manpower, reduced costs, and improved HSE.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121872
Author(s):  
Abouzar Rajabi Behesht Abad ◽  
Hamzeh Ghorbani ◽  
Nima Mohamadian ◽  
Shadfar Davoodi ◽  
Mohammad Mehrad ◽  
...  

Author(s):  
N. N. Mikhailov ◽  
◽  
L. S. Sechina ◽  
◽  

The Karachaganak field is represented by gas condensate and oil zones, a convenient object for studying changes in microstructural wettability during the transition from one zone to another. Microstructural wettability was characterized by a hydrophobization coefficient, Ѳн, which determines the proportion of the pore surface area occupied by adsorbed hydrocarbons. It was found that Ѳн of the samples of the gas and gas condensate zones is the same (on average 0.140), the oil zone - on average 0.250. Analysis of the IR spectra of extracted hydrocarbons showed that the microstructural wettability of the oil zone contains more aromatic, aliphatic, oxidized and sulfur-containing structures and fewer branched structures than in the gas condensate zone. The microstructural wettability of carbonate reservoirs depends on the hydrocarbon composition of the adsorbed oil. Keywords: microstructural wettability; hydrophobic coefficient; hydrocarbons; spectral coefficients.


Author(s):  
A. K. Raptanov ◽  
◽  
V. V. Ruzhenskyi ◽  
B. I. Kostiv ◽  
M. A. Myslyuk ◽  
...  

The paper presents a general overview of deep drilling in unstable formations at the Semyrenky gas condensate field of the Dnipro-Donetsk Trough, including well design, bottom hole assemblies (BHA), drilling conditions, and drilling muds. Problems encountered during drilling for production casing of Wells 72- and 75-Semyrenky using high-speed drilling methods are analyzed. The relationships between the rate of penetration and disturbed rock stability, volume excess and depth, as well as consistent empirical patterns in changes in mud properties and depth are established. With these technical and economic performance indicators for well drilling are given, elements of a borehole stability management strategy were defined, the principles of mud selection for drilling through problem zones are validated. The paper discusses the requirements to a mud hydraulics program to reduce the erosion of borehole walls, specific borehole preparation techniques, such as reaming and gauging, for drilling in problem zones, and alternative options to ensure borehole stability. Keywords: borehole stability; statistical models; hole gauging; hole geometry; drilling mud; BHA.


Author(s):  
A. D. Dzyublo ◽  
◽  
V. V. Maslov ◽  
V. V. Sidorov ◽  
O. A. Shnip ◽  
...  

According to the oil and geological zoning, the water area of the Kara Sea, including the Ob and Taz Bays, is located on the border of three oil and gas-bearing regions: Yamal, Gydan and Nadym-Purskaya, having different characteristics of oil and gas potential by section and by area. As a result of geological exploration carried out in the water area and on the adjacent land, a wide age range of oil and gas potential was revealed. Seven fields have been discovered in the waters of the Yuzhno-Kara NGO: six gas condensate fields in Cretaceous Cenomanian-Albian deposits and one oil and gas condensate field in Cretaceous and Jurassic deposits. Large gas condensate fields have been explored in the Ob and Taz bays in the Cenomanian-Alb-Apt complex. The water area of the lips is one of the most important areas in terms of the growth of economically viable natural gas resources. According to the research results, it has been established that the UV potential of the Jurassic and Lower Cretaceous complexes of the Ob and Taz Bays is characterized as highly promising. Keywords: Kara Sea; shelf; cretaceous and jurassic deposits.


2021 ◽  
Vol 6 (4) ◽  
pp. 116-122
Author(s):  
Tatyana I. Sinitsyna ◽  
Andrey N. Gorbunov

Background. Workovers (WO) are the main EOR tool at Krasnoleninskoye reservoirs. Therefore, the issue of increasing the reliability of technological and economic performance when planning various types of workovers is urgent. This is due to the complexity of selecting well candidates, the lack of a comprehensive methodology for assessing the short-term and long-term potential of wells, large WO scopes, as well as declining WO performance associated with the reduction of reserves, deterioration of the energy state of the reservoirs, and advancement of the injected water front. The purpose of the study is to create mathematical tools that will reduce the time of well-candidates selection for various types of workovers and to improve the WO quality for entire field. The paper describes methods of automated selection of well candidates that were successfully applied in the conditions of the field of interest, namely graphical and mathematical tools. The mathematical one has been created based on the correlation-regression analysis of the actual implementation of stimulation methods in various geological-field conditions in Microsoft Excel 2010 with Visual Basic for Applications (VBA). The graphical tool has been generated on the basis of all historical field data verified and processed using methods of primary statistical analysis in RN-KIN software. The study resulted in a technique that was selected and tested in the conditions of Krasnoleninskoye oil and gas condensate field. The process of introducing the developed approaches to the search for well candidates for various types of workovers in the field was accompanied by updating, analysis of results, and cyclic training of the system. A methodological approach has been developed, including the combination of several methods for selecting well candidates for various types of workovers. A combination of statistical and graphical methods made it possible to significantly improve the reliability of WO candidates selection and therefore to reduce the share of uneconomic workovers by 12 % in the period from 2017 to 2020. As part of the study, a script has been developed that automatically computes the rank of a well-candidate which significantly reduces time costs and allows to quickly evaluate the “best” workover candidates.


Sign in / Sign up

Export Citation Format

Share Document