sublevel caving
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 49)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

The Zhdanovskoe copper-nickel sulfide ores deposit is located in the north-west of the Murmansk region and is a mineral raw material source for JSC «Kola MMC». The main mining method used is sublevel caving. In some areas, due to the complex shape of the ore bodies, the open stoping mining method is used which requires determining stable parameters of stopes and pillars. It is necessary to study the stress-strain state of the deposit to ensure safe mining conditions. One of the possible solutions is the modeling of the stress-strain state of rock mass using the finite element method, for example, CAE Fidesys, which is FEMbased software. The use of CAE Fidesys for solving geomechanics tasks allows creating models of individual excavation units to determine the stability of stopes and pillars, and large-scale models that include several ore bodies and areas of the host rock mass. The article considers solutions of both types of geomechanic tasks using CAE Fidesys for conditions of the Zhdanovskoe deposit.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Hongyi Wang ◽  
Meichang Zhang

The sublevel caving method without sill pillar is used to improve the cost of mining. The analysis is performed according to unique geographical environment and the current mining technology of the mine. The wireless communication network is used to budget and control the work cost of mining. Simulation operation about unit explosive dosage, fan-shaped deep hole interval, hole bottom distance, and collapse step distance is performed. Experiments have shown that budget and control of the cost of mining workers with wireless communication technology can manage mining data and guide the design of mining data.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1619
Author(s):  
Yuye Tan ◽  
Mochuan Guo ◽  
Yimin Hao ◽  
Chi Zhang ◽  
Weidong Song

Non-pillar sublevel caving is beginning to use large structural parameters in China. Appropriate structural parameters can effectively control the loss and dilution of stope and improve ore drawing efficiency. In this study, taking Chengchao Iron Mine as the engineering background, a theoretical calculation, a numerical simulation, and physical similarity experiments were combined to optimize sublevel height, production drift spacing, and drawing space. The optimal structural parameter range, based on the ellipsoid ore drawing theory, was obtained as a theoretical reference for subsequent studies. A “two-step” strategy was used, in which PFC2D software (Itasca Consulting Group, Minneapolis, MN, USA) was used to numerically simulate 20 groups of different sublevel heights and production drift spacing parameters were used to determine the appropriate sublevel height and production drift spacing for the project. Subsequently, the optimization of the ore drawing space was studied using PFC3D (Itasca Consulting Group, Minneapolis, MN, USA) particle unit software, numerical simulation analysis, and similar physical experiments. The results showed that safe and efficient mining can be achieved when the structural parameters of the stope are 17.5 m sublevel height, 20 m production drift spacing, and 6 m drawing space. The findings of this study can further the goal of green and efficient mining, and provide a theoretical reference for the popularization and application of pillarless sublevel caving with large structural parameters at home and abroad. It is an effective measure for the green mining of caving mines.


2021 ◽  
Vol 12 (4) ◽  
pp. 64-78
Author(s):  
Bhanu Chander Balusa ◽  
Amit Kumar Gorai

Selection of underground metal mining method is a crucial task for the mining industry to excavate the ore deposit with proper safety and economy. The objective of the proposed study is to demonstrate the application of a fuzzy pattern recognition model for the decision-making of the most favourable underground metal mining method for a typical ore deposit. The model considers eight factors (shape, depth, dip, rock mass rating [RMR] of ore zone, RMR of footwall, RMR of hanging wall, thickness of the ore body, grade distribution), which influence the mining method, as input variables. The weights of these factors were determined using the analytic hierarchy process (AHP). The study used the pair-wise comparison method to determine the relative membership degrees of qualitative and quantitative criteria as well as weights of the criteria set. The model validation was done with the deposit characteristics of Uranium Corporation of India Limited (UCIL), Tummalapalle mine selected. The weighted distances for easiest to adopt are found to be 0.1436, 0.0230, 0.0497, 0.2085, 0.0952, 0.1228, and 0.1274, respectively, for block caving, sublevel stoping, sublevel caving, room and pillar, shrinkage stoping, cut and fill stoping, and squares set stoping. The results indicate that the room and pillar mining method is having the maximum weighted distance value for the given ore deposit characteristics and thus assigned the first rank. It was observed that the mining method selected using fuzzy pattern recognition model and the actual mining method adopted to extract the ore deposit are the same.


Author(s):  
S. Gyamfi ◽  
A. Halim ◽  
A. Martikainen

AbstractThis paper outlines a unique case of the development of strategies to reduce ventilation and heating costs in Konsuln iron ore mine in northern Sweden. The mine, located just south of Luossavaara-Kiirunavaara Aktiebolag’s Kiruna iron ore mine, was developed as a test mine 2018–2020 for the Sustainable Underground Mining (SUM) project. Besides functioning as a test mine, Konsuln also contributes ore production. The existing mine ventilation system was designed for the current production rate of 0.8 million tons per annum (Mtpa). There is a plan to increase this rate to between 1.8 and 3 Mtpa in the future, and this requires the primary fans to be upgraded. Therefore, a study was carried out to determine whether using ventilation on demand (VOD) could avoid this fan upgrade and reduce Konsuln’s ventilation and heating power costs in the future. The study also investigated whether using battery electric vehicles (BEVs) along with VOD or as a standalone strategy could further reduce these power costs. In addition, the study analyzed the suitability of heating power reduction strategies presently or previously used in the Nordic countries and Canada to investigate potential additional strategies to reduce the heating power cost, the largest portion of Konsuln’s ventilation and heating power costs. The study found using VOD can avoid the expensive upgrading of the existing primary fans and reduce Konsuln’s ventilation and heating power costs in the future. Using BEVs can further reduce these costs. Finally, none of the Nordic and Canadian heating power reduction strategies is suitable for Konsuln because they require unique conditions that do not exist in Konsuln.


Mining ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 180-191
Author(s):  
Soroush Khazaei ◽  
Yashar Pourrahimian

Production scheduling determines the most beneficial mining sequence over the life of a mine. Developing a schedule that meets all mining aspects can substantially reduce mining costs and increase profitability. Among all underground mining methods, the sublevel caving method is a common method with moderate development requirements, a high production rate, and a high degree of mechanization and flexibility. None of the manual planning methods and heuristic algorithms used in commercial software will lead to a truly optimal schedule. Mathematical programming models, particularly mixed-integer programming (MIP), have been applied to provide an operationally feasible multi-time-period schedule in sublevel caving. However, confined blasting conditions, chaotic material flow, and frequent mixing of ore and waste while loading broken ore at the drawpoint make the sublevel caving method unique when producing a holistic plan. This paper reviews all mathematical programming models presented in sublevel caving production scheduling, highlights the inherent characteristics of the sublevel caving that affect production, and puts forward some promising ideas for future works.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xiaoshuang Li ◽  
Jiabo Geng ◽  
Qihang Li ◽  
Weijun Tian ◽  
Tao Zhou

In this study, the No. 6 pit in the eastern mining area of the Jinning phosphate mine in China was taken as the research background. In order to reduce the cost of filling, an improved pillarless sublevel caving method is proposed. This method greatly improves the ore recovery rate by adding a recovery route. In addition, the combination of similar material simulation experiments and numerical simulations (discrete element and universal distinct element code) revealed the deformation and failure laws of the surrounding roof rock and the characteristics of the surface subsidence. The results indicate the following. (1) The similar simulation experimental results indicate that the deformation of the overlying rock layer originated from the direct roof of the goaf and gradually developed into the deep part of the rock layer. An irregular stepped caving zone formed in the goaf. The maximum surface subsidence was located above the phosphorus orebody, and it gradually decreased toward both sides. As the stope approached propulsion, the location of the maximum subsidence gradually moved toward the propulsion direction. (2) The numerical results revealed that the displacement of the overlying strata was nonlinear, and it decreased with increasing roof height. A support pressure concentration area was formed within a certain range of the stope roof. The numerical simulation results are basically consistent with the similar simulation experimental results.


Sign in / Sign up

Export Citation Format

Share Document