coal seam
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123004
Leilei Si ◽  
Yujun Xi ◽  
Jianping Wei ◽  
Bo Li ◽  
Hongyang Wang ◽  

Gang Zhou ◽  
Cunmin Wang ◽  
Rulin Liu ◽  
Shuailong Li ◽  
Qingtao Zhang ◽  

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122164
Lianman Xu ◽  
Kaixuan Lu ◽  
Yajing Li ◽  
Yuwei Li ◽  
Yishan Pan ◽  

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122233
Gang Wang ◽  
Enmao Wang ◽  
Qiming Huang ◽  
Shengpeng Li

V.N. Zakharov ◽  
V.A. Trofimov ◽  
A.V. Shlyapin

Formation of the stress-and-strain state of the rock mass in the roof of mined coal seam depends on the development of the mined-out space. It is believed that the coal seam is located deep enough and it can be assumed that the effect of the daylight surface on its condition can be neglected. In this case, the solution is based on the analytical approach using methods of the complex variable theory and it is reduced to the construction of a single permission analytical function. The paper reviews the evolution of the deformation processes in development of the mined-out space in presence of a hard-to-collapse elastic roof, which is capable of sinking smoothly over time, without sudden caving on the landings on the floor. A particular attention is paid to the phase when the roof and the floor touch each other, i.e. the roof caving, starting from the first touching and up to its complete caving. In this case, two sections of the hanging roof are formed, that are gradually reducing in length as the dimensions of the mined-out space increase. The area of roof caving is progressively increasing, and the vertical compressive stresses at the boundary are gradually rising, tending to reach the initial vertical pressure at the depth of the formation before the start of its mining. Tension zones relative to the horizontal and vertical stresses are identified, that are attributed to the areas of roof hang-up, which may determine the location of zones with higher methane and formation water permeability, both in the rocks between the seams and in the coal seam.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 60
Lihuan Chen ◽  
Muzheng Cheng ◽  
Yi Cai ◽  
Liwen Guo ◽  
Dianrong Gao

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.

2022 ◽  
Vol 2022 ◽  
pp. 1-19
Shang Yang ◽  
Xuehui Li ◽  
Jun Wang ◽  
Shuhao Yang ◽  
Zhen Shen ◽  

To solve the problem of strong ground pressure behaviour under a residual coal pillar in the overlying goaf of a close-distance coal seam, this paper proposes the technology of weakening and relieving the residual coal pillar in the overlying goaf by a high-pressure water jet. Based on the geological occurrence of the No. 3 coal seam and mountain No. 4 coal seam in the Yanzishan coal mine, the high-pressure water jet pressure relief technology of residual coal pillars in the overlying goaf of close-distance coal seams was studied by theoretical analysis and field industrial tests. First, the elastic-plastic zone of the residual coal pillar and the stress distribution law of the floor are obtained by theoretical analysis, and the influence degree of the residual coal pillar on the support of the lower coal seam working face is revealed. Then, a high-pressure water jet combined with mine pressure is proposed to weaken the residual coal pillar. Finally, through the residual coal pillar hydraulic cutting mechanical model and “double-drilling double-slot” model, the high-pressure water jet drilling layout parameters are determined, and an industrial field test is carried out. The single knife cutting coal output and 38216 working face hydraulic support monitoring data show that high-pressure hydraulic slotting can weaken the strength of the coal body to a certain extent, destroy the integrity of the residual coal pillar, cut off the load transmission path of the overlying strata, and reduce the working resistance of the hydraulic support under the residual coal pillar to a certain extent, which is beneficial to the safe mining of the working face.

2022 ◽  
Vol 9 ◽  
Bo Ma ◽  
Feng Wang ◽  
Hongyang Liu ◽  
Dawei Yin ◽  
Zhiguo Xia

A comprehensive understanding of the mechanical properties of coal and rock sections is necessary for interpreting the deformation and failure modes of such underground sections and for evaluating the potential dynamic hazards. However, most studies have focused on horizontal coal–rock composites and the mechanical properties of inclined coal–rock composites have not been considered. To explore the influence of different confining pressures and inclined coal seam thicknesses on the mechanical properties and failure characteristics of rock–coal–rock (RCR) composites, a numerical model based on the particle flow code was used to perform simulations on five inclined RCR composites at different confining pressures. The results show that the mechanical properties and failure characteristics of the RCR composites are affected considerably by the inclined coal seam thickness and the confining pressure. (1) When the inclined coal seam thickness is constant, the elasticity modulus of the inclined RCR composite increases nonlinearly with the confining pressure at first, and then remains constant. At the same confining pressure, the elasticity modulus of the inclined RCR composite decreases nonlinearly with the inclined coal seam thickness. (2) When the confining pressure is constant, the peak stress of the inclined RCR composite decreases with the increase of the inclined coal seam thickness. When the inclined coal seam thickness is constant, the peak stress increases with the confining pressure. (3) As the inclined coal seam thickness increases, the peak strain of the inclined RCR composite first decreases rapidly, and then remains constant when there is no confining pressure. When the confining pressure is between 5 and 20 MPa, the peak strain of the inclined RCR composite gradually increases. (4) In the absence of confining pressure, there are few microcracks in the rock at an inclined coal seam thickness of 10 mm, whereas all the other cracks are in the coal section. When the confining pressure ranges between 5 and 20 MPa, the failure modes of the RCR composite can be divided into Y- and X-types.

Sign in / Sign up

Export Citation Format

Share Document