scholarly journals Error analysis of the cutting machine step adjustable drive

2021 ◽  
Vol 2131 (2) ◽  
pp. 022046
Author(s):  
D A Rudikov ◽  
A S Ilinykh

Abstract The implementation precision of a number of adjustment bodies of a metal-cutting machine is also the most important indicator of its quality, a strictly standardized industry standard, technical conditions for manufacturing and acceptance. Moreover, the standard for limiting the error is set depending on the used denominator of the series. An essential feature of the precision of the series being implemented is that it is determined not by an error in parts’ manufacturing, but by the disadvantages of the used method of kinematic calculation. The established modes largely determine the efficiency of processing on metal-cutting machines. If the setting is set to an underestimated mode, then the performance is reduced accordingly. In the case of the mode overestimation, this leads to a decrease in durability and losses due to increased regrinding and tool changes. Creation of a complex of mathematical models for the design kinematic calculation of the metal-cutting machines’ main movement drive, which allows reducing the error in the implementation of a series of preferred numbers and increasing machining precision. The article provides a mathematical complex for analyzing the total error components, which allows determining and evaluating the total error of the drive of a metal-cutting machine by analyzing its constituent values with high precision: errors of a permanent part, errors of a multiplier part, rounding errors of standard numbers, errors in the electric motor and belt transmission. The presented complex helps to identify the role of the rounding error of preferred numbers in the total relative error formation and makes it possible to reduce it, which allows solving the problem of increasing the step adjustable drive precision. When using a mathematical complex, a fundamentally new opportunity for creating a scientific base appears, developing algorithms and programs for engineering calculation of tables that facilitate the selection of the numbers of teeth for multiple groups, structures and guaranteeing high precision of the implemented series.

Procedia CIRP ◽  
2014 ◽  
Vol 25 ◽  
pp. 138-145 ◽  
Author(s):  
M.R. Verma ◽  
E. Chatzivagiannis ◽  
D. Jones ◽  
P.G. Maropoulos

1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2020 ◽  
Author(s):  
R. Muthu Siva Bharath ◽  
Arunkumar Gopal ◽  
I. Maria James ◽  
S. Lakshmi Sankar

1997 ◽  
Vol 119 (4B) ◽  
pp. 713-716 ◽  
Author(s):  
S. B. Rao

This paper reviews the key developments in the area of metal cutting machine tool design over the last three decades, from a very practical perspective. While defining the drivers of machine tool design as higher productivity and higher accuracy, this paper examines the advances in design from the needs of these two drivers.


2021 ◽  
pp. 247-255
Author(s):  
V. Sychuk ◽  
O. Zabolotnyi ◽  
P. Harchuk ◽  
D. Somov ◽  
A. Slabkyi ◽  
...  

2016 ◽  
Vol 36 (8) ◽  
pp. 673-676 ◽  
Author(s):  
V. A. Grechishnikov ◽  
R. M. Khusainov ◽  
D. R. Akhkiyamov ◽  
S. Yu. Yurasov ◽  
O. I. Yurasova

Sign in / Sign up

Export Citation Format

Share Document