tool design
Recently Published Documents


TOTAL DOCUMENTS

649
(FIVE YEARS 133)

H-INDEX

24
(FIVE YEARS 4)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Eugenia Fezza ◽  
Joe M. Roberts ◽  
Toby J. A. Bruce ◽  
Lael E. Walsh ◽  
Michael T. Gaffney ◽  
...  

Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important insect pest of horticultural crops. To identify an effective and reliable monitoring system for adult vine weevil, this study investigated the influence of colour, height and entrance position on the efficacy of a model monitoring tool using modified paper cups as refuges. Vine weevil preferences were determined by the number of individuals recorded within a refuge. When provided with a binary choice between black or white refuges, vine weevil adults showed a preference for black refuges. Vine weevils provided with a range of coloured refuges (blue, green, red and yellow) in addition to black and white refuges showed a preference for black and blue over the other colours and white refuges in group choice experiments. Refuge height and entrance position also influenced vine weevil behaviour with individuals exhibiting a preference for taller refuges and those with entrance openings around the refuge base. These results provide insights into refuge selection by adult vine weevils, which can be exploited to improve monitoring tool design. The importance of developing an effective monitoring tool for vine weevil adults as part of an integrated pest management programme is discussed.


2021 ◽  
Author(s):  
Mauricio Espinosa ◽  
Jairo Leal ◽  
Ron Zbitowsky ◽  
Eduardo Pacheco

Abstract This paper highlights the first successful application of a field deployment of a high-temperature (HT) downhole shut-in tool (DHSIT) in multistage fracturing completions (MSF) producing retrograde gas condensate and from sour carbonate reservoirs. Many gas operators and service providers have made various attempts in the past to evaluate the long-term benefit of MSF completions while deploying DHSIT devices but have achieved only limited success (Ref. 1 and 2). During such deployments, many challenges and difficulties were faced in the attempt to deploy and retrieve those tools as well as to complete sound data interpretation to successfully identify both reservoir, stimulation, and downhole productivity parameters, and especially when having a combination of both heterogeneous rocks having retrograde gas pressure-volume-temperature (PVT) complexities. Therefore, a robust design of a DHSIT was needed to accurately shut-in the well, hold differential pressure, capture downhole pressure transient data, and thereby identify acid fracture design/conductivity, evaluate total KH, reduce wellbore storage effects, properly evaluate transient pressure effects, and then obtain a better understanding of frac geometry, reservoir parameters, and geologic uncertainties. Several aspects were taken into consideration for overcoming those challenges when preparing the DHSIT tool design including but not limited to proper metallurgy selection, enough gas flow area, impact on well drawdown, tool differential pressure, proper elastomer selection, shut-in time programming, internal completion diameter, and battery operation life and temperature. This paper is based on the first successful deployment and retrieval of the DHSIT in a 4-½" MSF sour carbonate gas well. The trial proved that all design considerations were important and took into consideration all well parameters. This project confirmed that DHSIT devices can successfully withstand the challenges of operating in sour carbonate MSF gas wells as well as minimize operational risk. This successful trial demonstrates the value of utilizing the DHSIT, and confirms more tangible values for wellbore conductivity post stimulation. All this was achieved by the proper metallurgy selection, maximizing gas flow area, minimizing the impact on well drawdown, and reducing well shut-in time and deferred gas production. Proper battery selection and elastomer design also enabled the tool to be operated at temperatures as high as 350 °F. The case study includes the detailed analysis of deployment and retrieval lessons learned, and includes equalization procedures, which added to the complexity of the operation. The paper captures all engineering concepts, tool design, setting packer mechanism, deployment procedures, and tool equalization and retrieval along with data evaluation and interpretation. In addition to lessons learned based on the field trial, various recommendations will be presented to minimize operational risk, optimize shut-in time and maximize data quality and interpretation. Utilizing the lessons learned and the developed procedures presented in this paper will allow for the expansion of this technology to different gas well types and formations as well as standardize use to proper evaluate the value of future MSF completions and stimulation designs.


2021 ◽  
Author(s):  
Zhi Lin ◽  
Caixu Yue ◽  
Desheng Hu ◽  
Xianli Liu ◽  
Steven Y. Liang ◽  
...  

Abstract Metal cutting tool is an important part of machining, and its performance directly affects the manufacturing efficiency and machining quality of products. With the increasing demands in manufacturing industry of cutting performance, machining efficiency, customization and quick response, traditional tool design methods can no longer meet the above requirements due to many repetitive work, large amount of calculation, complex process and low efficiency. Parametric design has become a new development direction of customized tool design because of its fast, stable and accurate characteristics. In this paper, the parametric design of cutting tools is realized based on the process construction method of model generating history. The tool parametric design platform is developed by the method of secondary development of commercial CAD software. The platform realizes automatic operation in the background without the main interface of CAD software, completes the parametric modeling process of tools, generates 2D drawings and 3D models conforming to ISO 13399 standard, and realizes the cloud storage function of model data. The platform has simple operation and good man-machine interaction, and realizes the parametric design of many kinds of tools. Compare with that traditional modeling method, using this parametric modeling platform, the modeling efficiency is increased by 90% on average. This platform is of great significance to improve the design efficiency of complex customized tools and shorten the original design cycle by 30%.


Author(s):  
Mira G.P. Zuidgeest ◽  
Iris Goetz ◽  
Anna-Katharina Meinecke ◽  
Daniel Boateng ◽  
Elaine A. Irving ◽  
...  

Design Works ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 16-25
Author(s):  
Dongyoon Kim ◽  
Kwangtae Jeong ◽  
Hui-Sung Lee

Sign in / Sign up

Export Citation Format

Share Document