scholarly journals High-energy cosmic antiparticle excess vs. isotropic gamma-ray background problem in decaying dark matter Universe

2016 ◽  
Vol 675 (1) ◽  
pp. 012023 ◽  
Author(s):  
V V Alekseev ◽  
K M Belotsky ◽  
Yu V Bogomolov ◽  
R I Budaev ◽  
O A Dunaeva ◽  
...  
2021 ◽  
Vol 2021 (11) ◽  
pp. 035
Author(s):  
Marco Chianese ◽  
Damiano F.G. Fiorillo ◽  
Rasmi Hajjar ◽  
Gennaro Miele ◽  
Ninetta Saviano

Abstract Among the several strategies for indirect searches of dark matter, a very promising one is to look for the gamma-rays from decaying dark matter. Here we use the most up-to-date upper bounds on the gamma-ray flux from 105 to 1011 GeV, obtained from CASA-MIA, KASCADE, KASCADE-Grande, Pierre Auger Observatory, Telescope Array and EAS-MSU. We obtain global limits on dark matter lifetime in the range of masses m DM = [107-1015] GeV. We provide the bounds for a set of decay channels chosen as representatives. The constraints derived here are new and cover a region of the parameter space not yet explored. We compare our results with the projected constraints from future neutrino telescopes, in order to quantify the improvement that will be obtained by the complementary high-energy neutrino searches.


Author(s):  
Jovana Petrovic ◽  
Tijana Prodanovic ◽  
Milos Kovacevic

Diffuse gamma ray emission from the Galactic center at 2-3 GeV, as well as the 12 TeV gamma ray excess in the Galactic disk, remain open for debate and represent the missing puzzles in the complete picture of the high-energy Milky Way sky. Our papers emphasize the importance of understanding all of the populations that contribute to the diffuse gamma background in order to discriminate between the astrophysical sources such as supernova remnants and pulsars, and something that is expected to be seen in gamma rays and is much more exotic - dark matter. We analyze two separate data sets that have been measured in different energy ranges from the ?Fermi-LAT? and ?Milagro? telescopes, using these as a powerful tool to limit and test our analytical source population models. We model supernova remnants and pulsars, estimating the number of still undetected ones that contribute to the diffuse background, trying to explain both the Galactic center and the 12 TeV excess. Furthermore, we aim to predict the number of soon to be detected sources with new telescopes, such as the ?HAWC?.


2013 ◽  
Vol 53 (A) ◽  
pp. 545-549 ◽  
Author(s):  
Aldo Morselli

Successfully launched in June 2008, the Fermi Gamma-ray Space Telescope, formerly named GLAST, has been observing the high-energy gamma-ray sky with unprecedented sensitivity in<br />the 20MeV ÷ 300 GeV energy range and electrons + positrons in the 7 GeV ÷ 1TeV range, opening a new observational window on a wide variety of astrophysical objects.


Sign in / Sign up

Export Citation Format

Share Document