scholarly journals SEARCH FOR DARK MATTER WITH GAMMA-RAYS: A REVIEW

2013 ◽  
Vol 53 (A) ◽  
pp. 545-549 ◽  
Author(s):  
Aldo Morselli

Successfully launched in June 2008, the Fermi Gamma-ray Space Telescope, formerly named GLAST, has been observing the high-energy gamma-ray sky with unprecedented sensitivity in<br />the 20MeV ÷ 300 GeV energy range and electrons + positrons in the 7 GeV ÷ 1TeV range, opening a new observational window on a wide variety of astrophysical objects.

1998 ◽  
Vol 188 ◽  
pp. 125-128
Author(s):  
T. Kifune

The current status of very high energy gamma ray astronomy (in ~ 1 TeV region) is described by using as example results of CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback). Gamma rays at TeV energies, emitted through inverse Compton effect of electrons or π0 decay from proton interaction, provide direct evidence on “hot” non-thermal processes of the Universe, as well as environmental features, such as the strength of magnetic field in the emission region, for the non-thermal processes.


1982 ◽  
Vol 83 (1-2) ◽  
pp. 279-286 ◽  
Author(s):  
R. W. Clay ◽  
P. R. Gerhardy ◽  
A. G. Gregory

2014 ◽  
Vol 10 (S313) ◽  
pp. 27-32
Author(s):  
Elina Lindfors

AbstractThe detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E>100 GeV) range is challenging, mainly because of their steep soft spectra and distance. Nevertheless four FSRQs are now known to be VHE emitters. The detection of the VHE γ-rays has challenged the emission models of these sources. The sources are also found to exhibit very different behavior. I will give an overview of what is known about the VHE emission of these sources and about the multiwavelength signatures that are connected to the VHE gamma-ray emission.


Sign in / Sign up

Export Citation Format

Share Document