scholarly journals 1D and 2D Occam's Inversion of Magnetotelluric Data Applied in Volcano-Geothermal Area In Central Java, Indonesia

2016 ◽  
Vol 739 ◽  
pp. 012036
Author(s):  
Elsi Ariani ◽  
Wahyu Srigutomo
Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 791-803 ◽  
Author(s):  
Weerachai Siripunvaraporn ◽  
Gary Egbert

There are currently three types of algorithms in use for regularized 2-D inversion of magnetotelluric (MT) data. All seek to minimize some functional which penalizes data misfit and model structure. With the most straight‐forward approach (exemplified by OCCAM), the minimization is accomplished using some variant on a linearized Gauss‐Newton approach. A second approach is to use a descent method [e.g., nonlinear conjugate gradients (NLCG)] to avoid the expense of constructing large matrices (e.g., the sensitivity matrix). Finally, approximate methods [e.g., rapid relaxation inversion (RRI)] have been developed which use cheaply computed approximations to the sensitivity matrix to search for a minimum of the penalty functional. Approximate approaches can be very fast, but in practice often fail to converge without significant expert user intervention. On the other hand, the more straightforward methods can be prohibitively expensive to use for even moderate‐size data sets. Here, we present a new and much more efficient variant on the OCCAM scheme. By expressing the solution as a linear combination of rows of the sensitivity matrix smoothed by the model covariance (the “representers”), we transform the linearized inverse problem from the M-dimensional model space to the N-dimensional data space. This method is referred to as DASOCC, the data space OCCAM’s inversion. Since generally N ≪ M, this transformation by itself can result in significant computational saving. More importantly the data space formulation suggests a simple approximate method for constructing the inverse solution. Since MT data are smooth and “redundant,” a subset of the representers is typically sufficient to form the model without significant loss of detail. Computations required for constructing sensitivities and the size of matrices to be inverted can be significantly reduced by this approximation. We refer to this inversion as REBOCC, the reduced basis OCCAM’s inversion. Numerical experiments on synthetic and real data sets with REBOCC, DASOCC, NLCG, RRI, and OCCAM show that REBOCC is faster than both DASOCC and NLCG, which are comparable in speed. All of these methods are significantly faster than OCCAM, but are not competitive with RRI. However, even with a simple synthetic data set, we could not always get RRI to converge to a reasonable solution. The basic idea behind REBOCC should be more broadly applicable, in particular to 3-D MT inversion.


2011 ◽  
Vol 32 (6) ◽  
pp. 654-664
Author(s):  
Seong-Kon Lee ◽  
In-Hwa Park ◽  
Yong-Hyun Chung ◽  
Tae-Jong Lee

Heliyon ◽  
2021 ◽  
pp. e07440
Author(s):  
Hakim Saibi ◽  
Sadieh Khosravi ◽  
Biruk Abera Cherkose ◽  
Maxim Smirnov ◽  
Yosef Kebede ◽  
...  

Geophysics ◽  
1990 ◽  
Vol 55 (12) ◽  
pp. 1613-1624 ◽  
Author(s):  
C. deGroot‐Hedlin ◽  
S. Constable

Magnetotelluric (MT) data are inverted for smooth 2-D models using an extension of the existing 1-D algorithm, Occam’s inversion. Since an MT data set consists of a finite number of imprecise data, an infinity of solutions to the inverse problem exists. Fitting field or synthetic electromagnetic data as closely as possible results in theoretical models with a maximum amount of roughness, or structure. However, by relaxing the misfit criterion only a small amount, models which are maximally smooth may be generated. Smooth models are less likely to result in overinterpretation of the data and reflect the true resolving power of the MT method. The models are composed of a large number of rectangular prisms, each having a constant conductivity. [Formula: see text] information, in the form of boundary locations only or both boundary locations and conductivity, may be included, providing a powerful tool for improving the resolving power of the data. Joint inversion of TE and TM synthetic data generated from known models allows comparison of smooth models with the true structure. In most cases, smoothed versions of the true structure may be recovered in 12–16 iterations. However, resistive features with a size comparable to depth of burial are poorly resolved. Real MT data present problems of non‐Gaussian data errors, the breakdown of the two‐dimensionality assumption and the large number of data in broadband soundings; nevertheless, real data can be inverted using the algorithm.


2015 ◽  
Vol 13 (4) ◽  
pp. 397-408 ◽  
Author(s):  
V. Spichak ◽  
J. Geiermann ◽  
O. Zakharova ◽  
P. Calcagno ◽  
A. Genter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document