scholarly journals Mock modular forms and geometric theta functions for indefinite quadratic forms

2017 ◽  
Vol 50 (40) ◽  
pp. 404001 ◽  
Author(s):  
Jens Funke ◽  
Stephen S Kudla
1978 ◽  
Vol 69 ◽  
pp. 97-106 ◽  
Author(s):  
Stephen S. Kudla

The purpose of this note is to show how the theta-functions attached to certain indefinite quadratic forms of signature (2, 2) can be used to produce a map from certain spaces of cusp forms of Nebentype to Hilbert modular forms. The possibility of making such a construction was suggested by Niwa [4], and the techniques are the same as his and Shintani’s [6]. The construction of Hilbert modular forms from cusp forms of one variable has been discussed by many people, and I will not attempt to give a history of the subject here. However, the map produced by the theta-function is essentially the same as that of Doi and Naganuma [2], and Zagier [7]. In particular, the integral kernel Ω(τ, z1, z2) of Zagier is essentially the ‘holomorphic part’ of the theta-function.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2012 ◽  
Vol 29 (1-3) ◽  
pp. 295-310 ◽  
Author(s):  
Kathrin Bringmann ◽  
Amanda Folsom ◽  
Robert C. Rhoades

Author(s):  
Amanda Folsom

This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later in 2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Christina Roehrig

AbstractThe modular transformation behavior of theta series for indefinite quadratic forms is well understood in the case of elliptic modular forms due to Vignéras, who deduced that solving a differential equation of second order serves as a criterion for modularity. In this paper, we will give a generalization of this result to Siegel theta series.


Author(s):  
Miranda C. N. Cheng ◽  
Francesca Ferrari ◽  
Gabriele Sgroi

Mock modular forms have found applications in numerous branches of mathematical sciences since they were first introduced by Ramanujan nearly a century ago. In this proceeding, we highlight a new area where mock modular forms start to play an important role, namely the study of three-manifold invariants. For a certain class of Seifert three-manifolds, we describe a conjecture on the mock modular properties of a recently proposed quantum invariant. As an illustration, we include concrete computations for a specific three-manifold, the Brieskorn sphere Σ (2, 3, 7). This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


Author(s):  
Gene S. Kopp

AbstractWe define generalised zeta functions associated with indefinite quadratic forms of signature $$(g-1,1)$$ ( g - 1 , 1 ) —and more generally, to complex symmetric matrices whose imaginary part has signature $$(g-1,1)$$ ( g - 1 , 1 ) —and we investigate their properties. These indefinite zeta functions are defined as Mellin transforms of indefinite theta functions in the sense of Zwegers, which are in turn generalised to the Siegel modular setting. We prove an analytic continuation and functional equation for indefinite zeta functions. We also show that indefinite zeta functions in dimension 2 specialise to differences of ray class zeta functions of real quadratic fields, whose leading Taylor coefficients at $$s=0$$ s = 0 are predicted to be logarithms of algebraic units by the Stark conjectures.


1997 ◽  
Vol 4 (4) ◽  
pp. 385-400
Author(s):  
T. Vepkhvadze

Abstract By means of the theory of modular forms the formulas for a number of representations of positive integers by two positive quaternary quadratic forms of steps 36 and 60 and by all positive diagonal quadratic forms with seven variables of step 8 are obtain.


Sign in / Sign up

Export Citation Format

Share Document