quantum invariant
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 837
Author(s):  
Salim Medjber ◽  
Salah Menouar ◽  
Jeong Ryeol Choi

We study the dynamical invariant for dissipative three coupled oscillators mainly from the quantum mechanical point of view. It is known that there are many advantages of the invariant quantity in elucidating mechanical properties of the system. We use such a property of the invariant operator in quantizing the system in this work. To this end, we first transform the invariant operator to a simple one by using a unitary operator in order that we can easily manage it. The invariant operator is further simplified through its diagonalization via three-dimensional rotations parameterized by three Euler angles. The coupling terms in the quantum invariant are eventually eliminated thanks to such a diagonalization. As a consequence, transformed quantum invariant is represented in terms of three independent simple harmonic oscillators which have unit masses. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators.


2021 ◽  
pp. 2150230
Author(s):  
Sara Hassoul ◽  
Salah Menouar ◽  
Jeong Ryeol Choi ◽  
Ramazan Sever

Quantum dynamical properties of a general time-dependent coupled oscillator are investigated based on the theory of two-dimensional (2D) dynamical invariants. The quantum dynamical invariant of the system satisfies the Liouville–von Neumann equation and it coincides with its classical counterpart. The mathematical formula of this invariant involves a cross term which couples the two oscillators mutually. However, we show that, by introducing two pairs of annihilation and creation operators, it is possible to uncouple the original invariant operator so that it becomes the one that describes two independent subsystems. The eigenvalue problem of this decoupled quantum invariant can be solved by using a unitary transformation approach. Through this procedure, we eventually obtain the eigenfunctions of the invariant operator and the wave functions of the system in the Fock state. The wave functions that we have developed are necessary in studying the basic quantum characteristics of the system. In order to show the validity of our theory, we apply our consequences to the derivation of the fluctuations of canonical variables and the uncertainty products for a particular 2D oscillatory system whose masses are exponentially increasing.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 409
Author(s):  
Selwyn Simsek ◽  
Florian Mintert

The framework of quantum invariants is an elegant generalization of adiabatic quantum control to control fields that do not need to change slowly. Due to the unavailability of invariants for systems with more than one spatial dimension, the benefits of this framework have not yet been exploited in multi-dimensional systems. We construct a multi-dimensional Gaussian quantum invariant that permits the design of time-dependent potentials that let the ground state of an initial potential evolve towards the ground state of a final potential. The scope of this framework is demonstrated with the task of shuttling an ion around a corner which is a paradigmatic control problem in achieving scalability of trapped ion quantum information technology.


2020 ◽  
Vol 378 (1-2) ◽  
pp. 447-484
Author(s):  
Renaud Detcherry ◽  
Stavros Garoufalidis

Abstract The AJ Conjecture relates a quantum invariant, a minimal order recursion for the colored Jones polynomial of a knot (known as the $$\hat{A}$$ A ^ polynomial), with a classical invariant, namely the defining polynomial A of the $${\mathrm {PSL}_2(\mathbb {C})}$$ PSL 2 ( C ) character variety of a knot. More precisely, the AJ Conjecture asserts that the set of irreducible factors of the $$\hat{A}$$ A ^ -polynomial (after we set $$q=1$$ q = 1 , and excluding those of L-degree zero) coincides with those of the A-polynomial. In this paper, we introduce a version of the $$\hat{A}$$ A ^ -polynomial that depends on a planar diagram of a knot (that conjecturally agrees with the $$\hat{A}$$ A ^ -polynomial) and we prove that it satisfies one direction of the AJ Conjecture. Our proof uses the octahedral decomposition of a knot complement obtained from a planar projection of a knot, the R-matrix state sum formula for the colored Jones polynomial, and its certificate.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050051
Author(s):  
Noboru Ito ◽  
Jun Yoshida

Khovanov homology is a categorification of the Jones polynomial, so it may be seen as a kind of quantum invariant of knots and links. Although polynomial quantum invariants are deeply involved with Vassiliev (aka. finite type) invariants, the relation remains unclear in case of Khovanov homology. Aiming at it, in this paper, we discuss a categorified version of Vassiliev skein relation on Khovanov homology. More precisely, we will show that the “genus-one” operation gives rise to a crossing change on Khovanov complexes. Invariance under Reidemeister moves turns out, and it enables us to extend Khovanov homology to singular links. We then see that a long exact sequence of Khovanov homology groups categorifies Vassiliev skein relation for the Jones polynomials. In particular, the Jones polynomial is recovered even for singular links. We in addition discuss the FI relation on Khovanov homology.


Author(s):  
Miranda C. N. Cheng ◽  
Francesca Ferrari ◽  
Gabriele Sgroi

Mock modular forms have found applications in numerous branches of mathematical sciences since they were first introduced by Ramanujan nearly a century ago. In this proceeding, we highlight a new area where mock modular forms start to play an important role, namely the study of three-manifold invariants. For a certain class of Seifert three-manifolds, we describe a conjecture on the mock modular properties of a recently proposed quantum invariant. As an illustration, we include concrete computations for a specific three-manifold, the Brieskorn sphere Σ (2, 3, 7). This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


2015 ◽  
Vol 93 (8) ◽  
pp. 841-845 ◽  
Author(s):  
I.A. Pedrosa ◽  
Alberes Lopes de Lima ◽  
Alexandre M. de M. Carvalho

We derive quantum solutions of a generalized inverted or repulsive harmonic oscillator with arbitrary time-dependent mass and frequency using the quantum invariant method and linear invariants, and write its wave functions in terms of solutions of a second-order ordinary differential equation that describes the amplitude of the damped classical inverted oscillator. Afterwards, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum, the associated uncertainty relation, and the quantum correlations between coordinate and momentum. As a particular case, we apply our general development to the generalized inverted Caldirola–Kanai oscillator.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450177 ◽  
Author(s):  
I. A. Pedrosa ◽  
D. A. P. de Lima

In this paper, we study the generalized harmonic oscillator with arbitrary time-dependent mass and frequency subjected to a linear velocity-dependent frictional force from classical and quantum points of view. We obtain the solution of the classical equation of motion of this system for some particular cases and derive an equation of motion that describes three different systems. Furthermore, with the help of the quantum invariant method and using quadratic invariants we solve analytically and exactly the time-dependent Schrödinger equation for this system. Afterwards, we construct coherent states for the quantized system and employ them to investigate some of the system's quantum properties such as quantum fluctuations of the coordinate and the momentum as well as the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary system. Finally, we evaluate the dynamical and Berry phases for three special cases and surprisingly find identical expressions for the dynamical phase and the same formulae for the Berry's phase.


Sign in / Sign up

Export Citation Format

Share Document