scholarly journals The Optimal Operation Model of Electric-Thermal-Gas Integrated Energy System Considering Multi-Energy Complementarity

2021 ◽  
Vol 781 (4) ◽  
pp. 042021
Author(s):  
Ailin Zhao ◽  
Jiaxin Ma ◽  
Xichao Zhou ◽  
Lin Cong ◽  
Baohua Bai ◽  
...  
2019 ◽  
Vol 14 (3) ◽  
pp. 352-363 ◽  
Author(s):  
Chenlu Mu ◽  
Tao Ding ◽  
Ziyu Zeng ◽  
Peiyun Liu ◽  
Yuankang He ◽  
...  

Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119629
Author(s):  
Fei Mei ◽  
Jiatang Zhang ◽  
Jixiang Lu ◽  
Jinjun Lu ◽  
Yuhan Jiang ◽  
...  

2021 ◽  
Vol 2095 (1) ◽  
pp. 012025
Author(s):  
Peifeng Li ◽  
Wei Wang ◽  
Jun Wei ◽  
Da Li ◽  
Chuan Long ◽  
...  

Abstract Flexible Load (FL) of electricity, heat and gas can improve the operation economy, flexibility and reliability of PIES. Aiming at the uncertainty of FL in the actual operation of the park integrated energy system (PIES), an optimal operation model of PIES with uncertainty of FL is proposed. Firstly, the uncertainty models of shiftable electric load and transferable load response are established, respectively. And then an adjustable heat load response model considering the uncertainty of solar radiation intensity is established. On this basis, an optimal operation model of PIES considering the uncertainty of the FL with the goal of maximizing the total revenue is constructed and is solved by the enhanced-interval linear programming method. Simulation indicate that FL can improve the operating economy of PIES and renewable energy consumption.


2021 ◽  
Vol 289 ◽  
pp. 116698
Author(s):  
Peng Li ◽  
Zixuan Wang ◽  
Jiahao Wang ◽  
Tianyu Guo ◽  
Yunxing Yin

2020 ◽  
Vol 165 ◽  
pp. 01013
Author(s):  
Linfeng Wang ◽  
Kai Zhang ◽  
Nan Xu ◽  
Jingyan Wang ◽  
Danyang Zhang ◽  
...  

With the depletion of fossil energy and the popularity of renewable energy, a comprehensive energy system with the goal of improving system energy efficiency and consuming renewable energy is booming. Based on the combined heat, power, and heat generation, this paper builds a comprehensive energy system operation optimization model in conjunction with ground source heat pumps. It aims to find the optimal operation strategy based on the actual situation of the park’s load, equipment capacity, and energy prices. Using the linear programming method, a mathematical model with the best economic efficiency of the integrated energy system is established, the optimal operation strategy for a typical day is analyzed, and the annual operation is simulated. Finally, it compares with conventional energy supply methods and analyzes the contribution to the consumption of renewable energy.


2020 ◽  
Vol 1639 ◽  
pp. 012061
Author(s):  
Shouqiang Li ◽  
Wenxia Liu ◽  
Jing Wang ◽  
Zongqi Liu

2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.


Sign in / Sign up

Export Citation Format

Share Document