scholarly journals Multi-Time Scale Economic Optimization Dispatch of the Park Integrated Energy System

2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.

2020 ◽  
Vol 165 ◽  
pp. 01013
Author(s):  
Linfeng Wang ◽  
Kai Zhang ◽  
Nan Xu ◽  
Jingyan Wang ◽  
Danyang Zhang ◽  
...  

With the depletion of fossil energy and the popularity of renewable energy, a comprehensive energy system with the goal of improving system energy efficiency and consuming renewable energy is booming. Based on the combined heat, power, and heat generation, this paper builds a comprehensive energy system operation optimization model in conjunction with ground source heat pumps. It aims to find the optimal operation strategy based on the actual situation of the park’s load, equipment capacity, and energy prices. Using the linear programming method, a mathematical model with the best economic efficiency of the integrated energy system is established, the optimal operation strategy for a typical day is analyzed, and the annual operation is simulated. Finally, it compares with conventional energy supply methods and analyzes the contribution to the consumption of renewable energy.


2021 ◽  
Vol 6 (11) ◽  
pp. 150
Author(s):  
Kai Hoth ◽  
Tom Steffen ◽  
Béla Wiegel ◽  
Amine Youssfi ◽  
Davood Babazadeh ◽  
...  

The intermittent energy supply from distributed resources and the coupling of different energy and application sectors play an important role for future energy systems. Novel operational concepts require the use of widespread and reliable Information and Communication Technology (ICT). This paper presents the approach of a research project that focuses on the development of an innovative operational concept for a Smart Integrated Energy System (SIES), which consists of a physical architecture, ICT and energy management strategies. The cellular approach provides the architecture of the physical system in combination with Transactive Control (TC) as the system’s energy management framework. Independent dynamic models for each component, the physical and digital system, operational management and market are suggested and combined in a newly introduced co-simulation platform to create a holistic model of the integrated energy system. To verify the effectiveness of the operational concept, energy system scenarios are derived and evaluation criteria are suggested which can be employed to evaluate the future system operations.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1103
Author(s):  
Jiajia Li ◽  
Jinfu Liu ◽  
Peigang Yan ◽  
Xingshuo Li ◽  
Guowen Zhou ◽  
...  

An integrated energy system interconnects multiple energies and presents a potential for economics improvement and energy sustainability, which has attracted extensive attention. However, due to the obvious volatility of energy demands, most existing integrated energy systems cannot operate in a totally self-sufficient way but interact with the upper grid frequently. With the increasingly urgent demand for energy saving and emissions reduction, renewable resources have occupied a larger and larger proportion in energy system, and at last they may be dominant in the future. Unlike conventional fossil fuel generation, the renewable resources are less controllable and flexible. To ease the pressure and guarantee the upper grid security, a more independent integrated energy system is required. Driven by that, this paper firstly reviews the optimal strategies considering both independence and benefit from perspectives of individual efforts and union efforts. Firstly, the general optimization process is summarized in terms of energy flows modelling and optimization methods to coordinate supply–demand side and realize benefit maximization. Based on that, handling with uncertainty of high-ratio renewable energy is reviewed from uncertainty modeling methods and multi-stage operation strategy perspectives to make the strategy accurate and reduce the adverse effects on the upper grid. Then, the hybrid timescale characteristics of different energy flows are explored to enhance operation flexibility of integrated energy systems. At last, the coordination among different participants is reviewed to reduce the whole adverse effect as a union. Remarks are conducted in the end of each part and further concluded in the final part. Overall, this study summarizes the research directions in operation optimization of integrated energy systems to cater for a renewable energy dominated scene to inspire the latter research.


2020 ◽  
Vol 12 (20) ◽  
pp. 8320
Author(s):  
Mohammad Hemmati ◽  
Mehdi Abapour ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Coordinated multi-carrier energy systems with natural gas and electricity energies provide specific opportunities to improve energy efficiency and flexibility of the energy supply. The interdependency of electricity and natural gas networks faces multiple challenges from power and gas flow in corresponding feeders and pipes and connection points between two infrastructures’ points of view. However, the energy hub concepts as the fundamental concept of multi-carrier energy systems with multiple conversion, storage, and generation facilities can be considered as a connection point between electricity and gas grids. Hence, this paper proposes an optimal operation of coordinated gas and electricity distribution networks by considering interconnected energy hubs. The proposed energy hub is equipped with combined heat and power units, a boiler, battery energy storage, a heat pump, and a gas-fired unit to meet the heating and electrical load demands. The proposed model is formulated as a two-stage scenario-based stochastic model aiming to minimize total operational cost considering wind energy, electrical load, and real-time power price uncertainties. The proposed integrated energy system can participate in real-time and day-ahead power markets, as well as the gas market, to purchase its required energy. The AC-power flow and Weymouth equation are extended to describe power and gas flow in feeders and gas pipelines, respectively. Therefore, a realistic model for the integrated electricity and gas grids considering coupling constraints is satisfied. The proposed model is tested on the integrated energy system and consists of a 33-bus electrical network and a 6-node gas grid with multiple interconnected energy hubs, where the numerical results reveal the effectiveness of the proposed model.


2021 ◽  
Vol 2121 (1) ◽  
pp. 012015
Author(s):  
Tieyan Zhang ◽  
Junbao Yang ◽  
Yaru Wang ◽  
Min Li ◽  
Dawei Zhang ◽  
...  

Abstract With the development of science and technology, people also pay more and more attention to the development of new energy. Although there are also many studies on integrated energy systems now, integrated energy systems containing energy storage should also be further studied. This paper proposes an optimization of integrated energy system for combined cooling, heating and power supply of new energy based on energy storage, which analyzes the gas turbine, absorption refrigerating machine, electric refrigerator, photovoltaic power generation units, wind turbine and the work characteristics of the energy storage device. In this paper, an integrated energy system optimization model of new energy cogeneration with energy storage equipment is established. An example shows that the integrated energy system with energy storage can effectively solve the independent decoupling operation relationship among cool, heat and electricity. At the same time, the proposed model can also solve the energy interaction among cool, heat and electricity. In this way, the optimal operation of the integrated energy system can be realized.


2021 ◽  
Vol 236 ◽  
pp. 02008
Author(s):  
LIU Dunnan ◽  
Gao Yuan ◽  
Wang Lingxiang ◽  
Liang Jiahao ◽  
Wang Zhenyu ◽  
...  

Considering the inherent characteristics of the park heating load, such as transmission delay, fuzzy heating comfort, etc., it can be used as a flexible load to participate in the optimal scheduling. Aiming at the minimum operation cost of the integrated energy system in the park, a collaborative optimal scheduling model of the park's integrated energy system with the participation of comprehensive demand response of electric heating load is constructed. The simulation results show that, compared with the optimization results of traditional power demand response, the application of integrated demand response of electric heating load improves the flexibility of production of cogeneration units in the park, reduces the total energy consumption cost of demand side users and the operation cost of the system on the premise of ensuring the balance of supply and demand of the system, improves the energy utilization efficiency, and realizes the environmental protection and economy of the system function.


2021 ◽  
Vol 13 (6) ◽  
pp. 3525
Author(s):  
Oscar Utomo ◽  
Muditha Abeysekera ◽  
Carlos E. Ugalde-Loo

Integrated energy systems have become an area of interest as with growing energy demand globally, means of producing sustainable energy from flexible sources is key to meet future energy demands while keeping carbon emissions low. Hydrogen is a potential solution for providing flexibility in the future energy mix as it does not emit harmful gases when used as an energy source. In this paper, an integrated energy system including hydrogen as an energy vector and hydrogen storage is studied. The system is used to assess the behaviour of a hydrogen production and storage system under different renewable energy generation profiles. Two case studies are considered: a high renewable energy generation scenario and a low renewable energy generation scenario. These provide an understanding of how different levels of renewable penetration may affect the operation of an electrolyser and a fuel cell against an electricity import/export pricing regime. The mathematical model of the system under study is represented using the energy hub approach, with system optimisation through linear programming conducted via MATLAB to minimise the total operational cost. The work undertaken showcases the unique interactions the fuel cell has with the hydrogen storage system in terms of minimising grid electricity import and exporting stored hydrogen as electricity back to the grid when export prices are competitive.


Sign in / Sign up

Export Citation Format

Share Document