optimal operation
Recently Published Documents


TOTAL DOCUMENTS

3237
(FIVE YEARS 1191)

H-INDEX

64
(FIVE YEARS 18)

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122835
Author(s):  
Javad Salehi ◽  
Amin Namvar ◽  
Farhad Samadi Gazijahani ◽  
Miadreza Shafie-khah ◽  
João P.S. Catalão

Author(s):  
Hazim Sadeq Mohsin Al-Wazni ◽  
Shatha Suhbat Abdulla Al-Kubragyi

This paper presents a hybrid algorithm by applying a hybrid firefly and particle swarm optimization algorithm (HFPSO) to determine the optimal sizing of distributed generation (DG) and distribution static compensator (D-STATCOM) device. A multi-objective function is employed to enhance the voltage stability, voltage profile, and minimize the total power loss of the radial distribution system (RDS). Firstly, the voltage stability index (VSI) is applied to locate the optimal location of DG and D-STATCOM respectively. Secondly, to overcome the sup-optimal operation of existing algorithms, the HFPSO algorithm is utilized to determine the optimal size of both DG and D-STATCOM. Verification of the proposed algorithm has achieved on the standard IEEE 33-bus and Iraqi 65-bus radial distribution systems through simulation using MATLAB. Comprehensive simulation results of four different cases show that the proposed HFPSO demonstrates significant improvements over other existing algorithms in supporting voltage stability and loss reduction in distribution networks. Furthermore, comparisons have achieved to demonstrate the superiority of HFPSO algorithms over other techniques due to its ability to determine the global optimum solution by easy way and speed converge feature.


2022 ◽  
Vol 119 ◽  
pp. 104973
Author(s):  
Niclas Brok ◽  
Torben Green ◽  
Christian Heerup ◽  
Shmuel S. Oren ◽  
Henrik Madsen

2022 ◽  
pp. 66-83
Author(s):  
Qingjiao Zhu ◽  
Xintong Guo ◽  
Yanan Guo ◽  
Jingjing Ma ◽  
Qingjie Guo

With the acceleration of industrialization and urbanization in China, wastewater treatment is increasing yearly. As a by-product of wastewater treatment, the gasification of sludge with coal in chemical looping process is a clean and efficient conversion technology. To explore the reaction behavior of cogasification of sludge and coal with iron-based oxygen carriers (OCs) for producing hydrogen-rich syngas, the experiment of cogasification using Fe2O3/Al2O3 as OC in a fluidized bed reactor was conducted. The result showed that the volume percentage of hydrogen (H2) and syngas yield is proportional to the amount of sludge added. The optimal operation conditions were: temperature at 900 °C, the mass ratio of OC to coal at 5.80 and mass ratio of sludge to coal at 0.2. Under this operating condition, the volume percentage of H2 and syngas yield in the flue gas was 75.6 vol% and 97.5 L·min-1·kg-1, respectively. Besides, the OC showed a stable reactivity in the sixth redox cycle with added sludge. However, the reactivity of OC significantly declined in the seventh and eighth redox cycles. It was recovered when the ash was separated. The decrease in the specific surface area of the OC caused by ash deposition is the main reason for the decline in its reactivity. The kinetic analysis showed that the random pore model describes the reaction mechanism of sludge/coal chemical looping gasification (CLG). The addition of sludge can reduce the activation energy of coal CLG reaction, accelerate the gasification reaction rate and increase the carbon conversion.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 220
Author(s):  
Hongxue Zhang ◽  
Lianpeng Zhang ◽  
Jianxia Chang ◽  
Yunyun Li ◽  
Ruihao Long ◽  
...  

Hydropower plant operation reorganizes the temporal and spatial distribution of water resources to promote the comprehensive utilization of water resources in the basin. However, a lot of uncertainties were brought to light concerning cascade hydropower plant operation with the introduction of the stochastic process of incoming runoff. Therefore, it is of guiding significance for the practice operation to investigate the stochastic operation of cascade hydropower plants while considering runoff uncertainty. The runoff simulation model was constructed by taking the cascade hydropower plants in the lower reaches of the Lancang River as the research object, and combining their data with the copula joint function and Gibbs method, and a Markov chain was adopted to construct the transfer matrix of runoff between adjacent months. With consideration for the uncertainty of inflow runoff, the stochastic optimal operation model of cascade hydropower plants was constructed and solved by the SDP algorithm. The results showed that 71.12% of the simulated monthly inflow of 5000 groups in the Nuozhadu hydropower plant drop into the reasonable range. Due to the insufficiency of measured runoff, there were too many 0 values in the derived transfer probability, but after the simulated runoff series were introduced, the results significantly improved. Taking the transfer probability matrix of simulated runoff as the input of the stochastic optimal operation model of the cascade hydropower plants, the operation diagram containing the future-period incoming water information was obtained, which could directly provide a reference for the optimal operation of the Nuozhadu hydropower plant. In addition, taking the incoming runoff process in a normal year as the standard, the annual mean power generation based on stochastic dynamic programming was similar to that based on dynamic programming (respectively 305.97 × 108kW⋅h and 306.91 × 108kW⋅h), which proved that the operation diagram constructed in this study was reasonable.


2022 ◽  
Author(s):  
Carlos Martinez ◽  
Eugenio Cinquemani ◽  
Hidde de Jong ◽  
Jean-Luc Gouze

The bacterium E. coli is widely used to produce recombinant proteins such as growth hormone and insulin. One inconvenience with E. coli cultures is the secretion of acetate through overflow metabolism. Acetate inhibits cell growth and represents a carbon diversion, which results in several negative effects on protein production. One way to overcome this problem is the use of a synthetic consortium of two different E. coli strains, one producing recombinant proteins and one reducing the acetate concentration. In this paper, we study a chemostat model of such a synthetic community where both strains are allowed to produce recombinant proteins. We give necessary and sufficient conditions for the existence of a coexistence equilibrium and show that it is unique. Based on this equilibrium, we define a multi-objective optimization problem for the maximization of two important bioprocess performance metrics, process yield and productivity. Solving numerically this problem, we find the best available trade-offs between the metrics. Under optimal operation of the mixed community, both strains must produce the protein of interest, and not only one (distribution instead of division of labor). Moreover, in this regime acetate secretion by one strain is necessary for the survival of the other (syntrophy). The results thus illustrate how complex multi-level dynamics shape the optimal production of recombinant proteins by synthetic microbial consortia.


Sign in / Sign up

Export Citation Format

Share Document