scholarly journals Effect of kinematic hardening on the yield surface evolution after strain-path change

Author(s):  
Yanfeng Yang ◽  
Cyrille Baudouin ◽  
Tudor Balan
1978 ◽  
Vol 100 (1) ◽  
pp. 104-111 ◽  
Author(s):  
H. S. Lamba ◽  
O. M. Sidebottom

Experiments that demonstrate the basic quantitative and qualitative aspects of the cyclic plasticity of metals are presented in Part 1. Three incremental plasticity kinematic hardening models of prominence are based on the Prager, Ziegler, and Mroz hardening rules, of which the former two have been more frequently used than the latter. For a specimen previously fully stabilized by out of phase cyclic loading the results of a subsequent cyclic nonproportional strain path experiment are compared to the predictions of the above models. A formulation employing a Tresca yield surface translating inside a Tresca limit surface according to the Mroz hardening rule gives excellent predictions and also demonstrates the erasure of memory material property.


2021 ◽  
Vol 194 ◽  
pp. 106217
Author(s):  
Diane Hérault ◽  
Sandrine Thuillier ◽  
Shin-Yeong Lee ◽  
Pierre-Yves Manach ◽  
Frédéric Barlat

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Krzysztof Muszka ◽  
Mateusz Sitko ◽  
Paulina Lisiecka-Graca ◽  
Thomas Simm ◽  
Eric Palmiere ◽  
...  

The experimental and numerical study of the effects of the recrystallization behavior of austenite model alloys during hot plate rolling on reverse rolling is the main goal of the paper. The computer models that are currently applied for simulation of reverse rolling are not strain-path-sensitive, thus leading to overestimation of the processing parameters outside the accepted process window (e.g., deformation in the partial austenite recrystallization region). Therefore, in this work, a particular focus is put on the investigation of strain path effects that occur during hot rolling and their influence on the microstructure evolution and mechanical properties of microalloyed austenite. Both experimental and numerical techniques are employed in this study, taking advantage of the integrated computational material engineering concept. The combined isotropic–kinematic hardening model is used for the macroscale predictions to take into account softening effects due to strain reversal. The macroscale model is additionally enriched with the full-field microstructure evolution model within the cellular automata framework. Examples of obtained results, highlighting the role of the strain reversal on the microstructural response, are presented within the paper. The combination of the physical simulation of austenitic model alloys and computer modeling provided new insights into optimization of the processing routes of advanced high-strength steels (AHSS).


Sign in / Sign up

Export Citation Format

Share Document