Metals
Latest Publications


TOTAL DOCUMENTS

6278
(FIVE YEARS 6003)

H-INDEX

0
(FIVE YEARS 0)

Published By Mdpi Ag

2075-4701
Updated Saturday, 19 June 2021

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 976
Author(s):  
Ali Afzal ◽  
Mohsen Hamedi ◽  
Chris Valentin Nielsen

Al-Si is the most popular coating used to prevent oxidation on the surfaces of hot-stamped steel sheets during the heating process. However, like other coatings, it affects the strength of the spot welds in joining the hot-stamped steel parts. In this study, the effects of Al-Si coating on the tensile strength of the resistance spot-welded joints in hot-stamped steel are discussed. Two types of 1.8 mm hot-stamped steel, in uncoated and Al-Si coated forms, were resistance spot-welded, and the tensile shear behavior of the welded joints was studied in both static and dynamic tests. To do this, a special fixture for impact tensile shear tests was designed and fabricated. In the case of the Al-Si coated steel, the presence of the molten Al-Si over the fusion zone, especially its aggregation in the edge of the weld nugget, caused a decrease in the maximum tensile load capacity and a failure of energy absorption in static and dynamic tests, respectively. Additionally, it increased the probability of changing its failure mode from pull out to interfacial fracture in the dynamic test. This study shows that the tensile strength behavior of the welded joints for the Al-Si coated hot-stamped steel is lower than the uncoated steel during static, and especially dynamic, force.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 977
Author(s):  
Min Hee Joo ◽  
So Jeong Park ◽  
Hye Ji Jang ◽  
Sung-Min Hong ◽  
Choong Kyun Rhee ◽  
...  

Terpyridine-functionalized Ti nanospike electrodes (TiNS-SiTpy) were developed and applied to cyclic voltammetry and amperometry of Ln (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) ions and mixed Eu (III) + Ln (III) ions in a 0.1 M NaClO4 electrolyte. Electrodeposition was successfully performed over TiNS-SiTpy electrodes, which were fully examined by scanning electron microscopy, X-ray diffraction crystallography, Fourier-transform infrared spectroscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), and PL decay kinetics. The Gd and Tb ions were found to increase PL intensities with 10× longer lifetimes of 1.32 μs and 1.03 μs, respectively, compared with that of the electrodeposited Eu sample. The crystal phase and the oxidation states were fully examined for the mixed Ln (Eu + Gd and Eu + Tb) complex structures.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 978
Author(s):  
Srecko Stopic ◽  
Bernd Friedrich

Unit operations (UO) are mostly used in non-ferrous extractive metallurgy (NFEM) and usually separated into three categories: (1) hydrometallurgy (leaching under atmospheric and high pressure conditions, mixing of solution with gas and mechanical parts, neutralization of solution, precipitation and cementation of metals from solution aiming purification, and compound productions during crystallization), (2) pyrometallurgy (roasting, smelting, refining), and (3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). The high demand for critical metals, such as rare earth elements (REE), indium, scandium, and gallium raises the need for an advance in understanding of the UO in NFEM. The aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 1 bar at 100 °C in an agitating glass reactor and under a high pressure (40–50 bar) at high temperatures (below 270 °C) in an autoclave and tubular reactor. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using liquid (water solution)/liquid (organic phase) extraction (solvent extraction (SX) in mixer-settler) and solid-liquid filtration in chamber filter-press under pressure until 5 bar. Crystallization is the process by which a metallic compound is converted from a liquid into a crystalline state via a supersaturated solution. The final step is metal production using different methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for REE and aluminum). Advanced processes, such as ultrasonic spray pyrolysis, microwave assisted leaching, and can be combined with reduction processes in order to produce metallic powders. Some preparation for the leaching process is performed via a roasting process in a rotary furnace, where the sulfidic ore was first oxidized in an oxidic form which is a suitable for the metal transfer to water solution. UO in extractive metallurgy of REE can be successfully used not only for the metal wining from primary materials, but also for its recovery from secondary materials.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 970
Author(s):  
Gloria G. García ◽  
Josep Oliva ◽  
Eduard Guasch ◽  
Hernán Anticoi ◽  
Alfredo L. Coello-Velázquez ◽  
...  

It is a well-known fact that the value of the Bond work index (wi) for a given ore varies along with the grinding size. In this study, a variability bysis is carried out with the Bond standard grindability tests on different critical metal ores (W, Ta), ranging from coarse grinding (rod mills) to fine grinding (ball mills). The relationship between wiand grinding size did not show a clear correlation, while the grindability index (gpr) and the grinding size showed a robust correlation, fitting in all cases to a quadratic curve with a very high regression coefficient. This result suggests that, when performing correlation studies among ore grindability and rock mechanics parameters, it is advised to use the grindability index instead of the Bond work index.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 971
Author(s):  
Xiaofang Wang ◽  
Yong Lu ◽  
Ziyu Hu ◽  
Xiaohong Shao

For searching both high-performances and better fits for near-room temperature thermoelectric materials, we here carried out a theoretical study on thermoelectric properties and doping regulation of Mg3X2 (X = As, Sb, Bi) by the combined method of first principle calculations and semi-classical Boltzmann theory. The thermoelectric properties of n-type Mg3As2, Mg3Sb2, and Mg3Bi2 were studied, and it was found that the dimensionless figures of merit, zT, are 2.58, 1.38, 0.34, and the p-type ones are 1.39, 0.64, 0.32, respectively. Furthermore, we calculated the lattice thermal conductivity of doped structures and screened out the structures with a relatively low formation energy to study the phonon dispersion and thermal conductivity in Mg3X2 (X = As, Sb, Bi). Finally, high thermoelectric zT and ultralow thermal conductivity of these doped structures was discussed.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 972
Author(s):  
Miran Brezocnik ◽  
Uroš Župerl

Štore Steel Ltd. is one of the major flat spring steel producers in Europe. Until 2016 the company used a three-strand continuous casting machine with 6 m radius, when it was replaced by a completely new two-strand continuous caster with 9 m radius. For the comparison of the tensile strength of 41 hypoeutectoid steel grades, we conducted 1847 tensile strength tests during the first period of testing using the old continuous caster, and 713 tensile strength tests during the second period of testing using the new continuous caster. It was found that for 11 steel grades the tensile strength of the rolled material was statistically significantly lower (t-test method) in the period of using the new continuous caster, whereas all other steel grades remained the same. To improve the new continuous casting process, we decided to study the process in more detail using the Multiple Linear Regression method and the Genetic Programming approach based on 713 items of empirical data obtained on the new continuous casting machine. Based on the obtained models of the new continuous casting process, we determined the most influential parameters on the tensile strength of a product. According to the model’s analysis, the secondary cooling at the new continuous caster was improved with the installation of a self-cleaning filter in 2019. After implementing this modification, we performed an additional 794 tensile tests during the third period of testing. It was found out that, after installation of the self-cleaning filter, in 6 steel grades out of 19, the tensile strength in rolled condition improved statistically significantly, whereas all the other steel grades remained the same.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 975
Author(s):  
Kirill Karimov ◽  
Denis Rogozhnikov ◽  
Oleg Dizer ◽  
Maksim Tretiak ◽  
Sergey Mamyachenkov ◽  
...  

The processing of low-grade polymetallic materials, such as copper–zinc, copper–lead–zinc, and poor arsenic-containing copper concentrates using hydrometallurgical methods is becoming increasingly important due to the depletion of rich and easily extracted mineral resources, as well as due to the need to reduce harmful emissions from metallurgy, especially given the high content of arsenic in ores. Ferric arsenates obtained through hydrothermal precipitation are the least soluble and most stable form of arsenic, which is essential for its disposal. This paper describes the investigation of the oxidation kinetics of As (III) ions to As (V) which is required for efficient purification of the resulting solutions and precipitation of low-solubility ferric arsenates. The effect of temperature (160–200 °C), the initial concentration of Fe (II) (3.6–89.5 mmol/dm3), Cu (II) (6.3–62.9 of mmol/dm3) and the oxygen pressure (0.2–0.5 MPa) on the oxidation efficiency of As (III) to As (V) was studied. As (III) oxidation in H3AsO-Fe2+-Cu2+-H2SO4 and H3AsO-Fe2+-H2SO4 systems was controlled by a chemical reaction with the apparent activation energy (Ea (≈84.3–86.3 kJ/mol)). The increase in the concentration of Fe (II) ions and addition of an external catalyst (Cu (II) ions) both have a positive effect on the process. When Cu (II) ions are introduced into the solution, their catalytic effect is confirmed by a decrease in the partial orders, Fe (II) ions concentration from 0.43 to 0.20, and the oxygen pressure from 0.95 to 0.69. The revealed catalytic effect is associated with a positive effect of Cu (II) ions on the oxidation of Fe (II) to Fe (III) ions, which further participate in As (III) oxidation. The semi-empirical equations describing the reaction rate under the studied conditions are written.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 969
Author(s):  
Iria Feijoo ◽  
Gloria Pena ◽  
Marta Cabeza ◽  
M. Julia Cristóbal ◽  
Pilar Rey

Metal–matrix composites (MMC) of aluminium alloy 7075 (AA7075) containing 1 wt.% and 0.5 wt.% multiwall carbon nanotubes (MWCNTs) were developed by powder metallurgy, using a high energy ball milling (HEBM) process for dispersion of the MWCNTs. The powder of the AA7075-MWCNT obtained was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural changes produced during the milling process, such as the modification of the crystallite size, as well as the micro-deformation of the matrix crystal lattice, were determined using the Scherrer formula. After consolidation into a strip shape using the hot powder extrusion (HPE) process at 500 °C, no porosity was detected and a fine homogeneous dispersion of the reinforcement into the matrix was obtained. After performing a 0.2 HV test and tensile tests in the extruded profiles of both composites, a better combination of properties was found in samples of AA7075-0.5 wt.% MWCNT, with the increase in measured ductility being especially remarkable.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Yulia Sokolovskaya ◽  
Olga Miroshkina ◽  
Danil Baigutlin ◽  
Vladimir Sokolovskiy ◽  
Mikhail Zagrebin ◽  
...  

In the search for new magnetic functional materials, non-stoichiometric compounds remain a relatively unexplored territory. While experimentalists create new compositions looking for improved functional properties, their work is not guided by systematic theoretical predictions. Being designed for perfect periodic crystals, the majority of first-principles approaches struggle with the concept of a non-stoichiometric system. In this work, we attempt a systematic computational study of magnetic and structural properties of Ni–Mn–Ga, mapped onto ternary composition diagrams. Compositional stability was examined using the convex hull analysis. We show that the cubic austenite has its stability region close to the stoichiometric Ni2MnGa, in agreement with experimental data, while the tetragonal martensite spreads its stability over a wider range of Mn and Ni contents. The unstable compositions in both austenite and martensite states are located in the Ga-rich corner of the ternary diagram. We note that simultaneous stability of the austenite and martensite should be considered for potentially stable compounds suitable for synthesis. The majority of compounds are predicted to be ferrimagnetically ordered in both austenitic and martensitic states. The methodology used in this work is computationally tractable, yet it delivers some predictive power. For experimentalists who plan to synthesize stable Ni–Mn–Ga compounds with ferromagnetic order, we narrow the target compositional range substantially.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 974
Author(s):  
Manuel de J. Barrena-Rodríguez ◽  
Francisco A. Acosta-González ◽  
María M. Téllez-Rosas

This review presents an analysis and discussion about heat transfer phenomena during quenching solid steel from high temperatures. It is shown a description of the boiling curve and the most used methods to characterize heat transfer when using liquid quenchants. The present work points out and criticizes important aspects that are frequently poorly attended in the technical literature about determination and use of the boiling curve and/or the respective heat transfer coefficient for modeling solid phase transformations in metals. Points to review include: effect of initial workpiece temperature on the boiling curve, fluid velocity specification to correlate with heat flux, and the importance of coupling between heat conduction in the workpiece and convection boiling to determine the wall heat flux. Finally, research opportunities in this field are suggested to improve current knowledge and extend quenching modeling accuracy to complex workpieces.


Export Citation Format

Share Document