Ricci curvature and functional inequalities on graphs

2017 ◽  
Vol 28 (3) ◽  
pp. 2312-2345 ◽  
Author(s):  
Li-Juan Cheng ◽  
Anton Thalmaier

2021 ◽  
Vol 9 (1) ◽  
pp. 219-253
Author(s):  
Hiroshi Tsuji

Abstract In this paper, we consider a dilation type inequality on a weighted Riemannian manifold, which is classically known as Borell’s lemma in high-dimensional convex geometry. We investigate the dilation type inequality as an isoperimetric type inequality by introducing the dilation profile and estimate it by the one for the corresponding model space under lower weighted Ricci curvature bounds. We also explore functional inequalities derived from the comparison of the dilation profiles under the nonnegative weighted Ricci curvature. In particular, we show several functional inequalities related to various entropies.


2003 ◽  
Vol 06 (supp01) ◽  
pp. 29-38 ◽  
Author(s):  
XUE-MEI LI ◽  
FENG-YU WANG

It is believed that the family of Riemannian manifolds with negative curvatures is much richer than that with positive curvatures. In fact there are many results on the obstruction of furnishing a manifold with a Riemannian metric whose curvature is positive. In particular any manifold admitting a Riemannian metric whose Ricci curvature is bounded below by a positive constant must be compact. Here we investigate such obstructions in terms of certain functional inequalities which can be considered as generalized Poincaré or log-Sobolev inequalities. A result of Saloff-Coste is extended.


Author(s):  
Franck Barthe ◽  
Michał Strzelecki

AbstractProbability measures satisfying a Poincaré inequality are known to enjoy a dimension-free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincaré inequality automatically implies a modified logarithmic Sobolev inequality. As a consequence the Poincaré inequality ensures a stronger dimension-free concentration property, known as two-level concentration. We show that a similar phenomenon occurs for the Latała–Oleszkiewicz inequalities, which were devised to uncover dimension-free concentration with rate between exponential and Gaussian. Motivated by the search for counterexamples to related questions, we also develop analytic techniques to study functional inequalities for probability measures on the line with wild potentials.


Sign in / Sign up

Export Citation Format

Share Document