scholarly journals Prime Numbers and Unique Factorization

2018 ◽  
pp. 1-23
1992 ◽  
Vol 57 (3) ◽  
pp. 1057-1085 ◽  
Author(s):  
Stuart T. Smith

AbstractWe show that IE1 proves that every element greater than 1 has a unique factorization into prime powers, although we have no way of recovering the exponents from the prime powers which appear. The situation is radically different in Bézout models of open induction. To facilitate the construction of counterexamples, we describe a method of changing irreducibles into powers of irreducibles, and we define the notion of a frugal homomorphism into , the product of the p-adic integers for each prime p.


Author(s):  
Robin Wilson

‘Conjectures and theorems’ investigates a number of topics, such as the distribution of prime numbers, and two unsolved problems, Goldbach’s conjecture and the twin prime conjecture. The factorization of positive integers into primes is unique, but this does not hold for certain other systems of numbers. A more in-depth look at unique factorization gives deeper results, including a proposed result of Gauss. Mathematicians in the 1950s and 1960s confirmed that he was correct, as shown in the so-called ‘Baker-Heegner-Stark theorem’.


2004 ◽  
Vol 41 (3) ◽  
pp. 309-324
Author(s):  
C. Bauer
Keyword(s):  

Let pi, 2 ≤ i ≤ 5 be prime numbers. It is proved that all but ≪ x23027/23040+ε even integers N ≤ x can be written as N = p21 + p32 + p43 + p45.


1977 ◽  
Vol 1 (S2) ◽  
pp. 7-19 ◽  
Author(s):  
Don Zagier
Keyword(s):  

2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


1996 ◽  
Vol 39 (4) ◽  
pp. 402-407 ◽  
Author(s):  
Jean-Luc Chabert
Keyword(s):  

AbstractWe give a characterization of polynomials with rational coefficients which take integral values on the prime numbers: to test a polynomial of degree n, it is enough to consider its values on the integers from 1 to 2n —1.


Sign in / Sign up

Export Citation Format

Share Document