2005 ◽  
Vol 635 (2) ◽  
pp. L193-L196 ◽  
Author(s):  
Mausumi Dikpati ◽  
Peter A. Gilman

2013 ◽  
Vol 716 ◽  
pp. 528-565 ◽  
Author(s):  
Bruno Ribstein ◽  
Vladimir Zeitlin

AbstractWe undertake a detailed analysis of linear stability of geostrophically balanced double density fronts in the framework of the two-layer rotating shallow-water model on the $f$-plane with topography, the latter being represented by an escarpment beneath the fronts. We use the pseudospectral collocation method to identify and quantify different kinds of instabilities resulting from phase locking and resonances of frontal, Rossby, Poincaré and topographic waves. A swap in the leading long-wave instability from the classical barotropic form, resulting from the resonance of two frontal waves, to a baroclinic form, resulting from the resonance of Rossby and frontal waves, takes place with decreasing depth of the lower layer. Nonlinear development and saturation of these instabilities, and of an instability of topographic origin, resulting from the resonance of frontal and topographic waves, are studied and compared with the help of a new-generation well-balanced finite-volume code for multilayer rotating shallow-water equations. The results of the saturation for different instabilities are shown to produce very different secondary coherent structures. The influence of the topography on these processes is highlighted.


2004 ◽  
Vol 508 ◽  
pp. 373-373
Author(s):  
JOSEPH B. KELLER

2018 ◽  
Author(s):  
LMD

We show how the two-layer moist-convective rotating shallow water model (mcRSW), which proved to be a simple and robust tool for studying effects of moist convection on large-scale atmospheric motions, can be improved by including, in addition to the water vapour, precipitable water, and the effects of vaporisation, entrainment, and precipitation. Thus improved mcRSW becomes cloud-resolving. It is applied, as an illustration, to model the development of instabilities of tropical cyclone-like vortices.


Sign in / Sign up

Export Citation Format

Share Document