wave instability
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 59)

H-INDEX

55
(FIVE YEARS 3)

Author(s):  
В.С. Чеканов ◽  
Н.В. Кандаурова ◽  
Д.Л. Винокурский

Свойства межфазной поверхности магнитной жидкости на границе с водой в электрическом поле изучались во многих работах. Были обнаружено изменение отражательной способности межфазной поверхности вода – магнитная жидкость в электрическом поле, что авторами связывается с образованием на межфазной границе слоя плотноупакованных частиц. По оптическим и электрическим измерениям оценена толщина d этого слоя. Интерес к этим эффектам, помимо чисто академического, связан с возможностью управления поведением межфазной границы раздела магнитного коллоида и гомогенной жидкости внешним электрическим полем, что представляет практический интерес, поскольку слой частиц магнетита на межфазной поверхности может быть интерпретирован как жидкая мембрана с особыми свойствами. Задача настоящего исследования – теоретически показать, что образование слоя частиц дисперсной фазы магнитной жидкости в электрическом поле и связанное с этим уменьшение межфазного натяжения является определяющим фактором для развития волновой неустойчивости. A layer of close-packed particles of a dispersed phase (magnetite) with a protective shell of oleic acid is formed on the interface of a weakly conducting magnetic colloid (magnetic fluid) and water in a perpendicular electric field. The formation of a layer leads to a decrease in the interfacial tension. When the magnetic particles come into contact with the electrode surface, the electrochemical interaction of oleic acid molecules surrounding the particle with water occurs. As a result of the reaction, released ions charge the surface layer. After some time, the particles in the layer get recharged and repelled from the interface. This leads to wave instability. This paper considers the mathematical modeling of instability in the form of a boundary value problem – a dispersion equation. The determining factor in the development of wave instability is the action of the electric field, the formation of the near-electrode layer and, as a consequence, a decrease in the interfacial tension.


2021 ◽  
Vol 922 (1) ◽  
pp. 13
Author(s):  
Jeffrey Fung ◽  
Tomohiro Ono

Abstract Vortices are readily produced by hydrodynamical instabilities, such as the Rossby wave instability, in protoplanetary disks. However, large-scale asymmetries indicative of dust-trapping vortices are uncommon in submillimeter continuum observations. One possible explanation is that vortices have short lifetimes. In this paper, we explore how radiative cooling can lead to vortex decay. Elliptical vortices in Keplerian disks go through adiabatic heating and cooling cycles. Radiative cooling modifies these cycles and generates baroclinicity that changes the potential vorticity of the vortex. We show that the net effect is typically a spin down, or decay, of the vortex for a subadiabatic radial stratification. We perform a series of two-dimensional shearing box simulations, varying the gas cooling (or relaxation) time, t cool, and initial vortex strength. We measure the vortex decay half-life, t half, and find that it can be roughly predicted by the timescale ratio t cool/t turn, where t turn is the vortex turnaround time. Decay is slow in both the isothermal (t cool ≪ t turn) and adiabatic (t cool ≫ t turn) limits; it is fastest when t cool ∼ 0.1 t turn, where t half is as short as ∼300 orbits. At tens of astronomical units where disk rings are typically found, t turn is likely much longer than t cool, potentially placing vortices in the fast decay regime.


2021 ◽  
Vol 96 (12) ◽  
pp. 125619
Author(s):  
S K Zaghbeer ◽  
E K El-Shewy

2021 ◽  
Vol 28 (10) ◽  
pp. 102101
Author(s):  
Nikhil Chakrabarti ◽  
Abhijit Sen

2021 ◽  
Vol 33 (48) ◽  
pp. 485401
Author(s):  
Bogdan Guster ◽  
Miguel Pruneda ◽  
Pablo Ordejón ◽  
Enric Canadell ◽  
Jean-Paul Pouget

2021 ◽  
Vol 914 (2) ◽  
pp. L38
Author(s):  
Takahiro Ueda ◽  
Mario Flock ◽  
Tilman Birnstiel

Sign in / Sign up

Export Citation Format

Share Document