scholarly journals A survey of combinatorial aspects in the topology of complex hyperplane arrangements

Author(s):  
Anca Daniela Măcinic
2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2015 ◽  
Vol 27 (4) ◽  
Author(s):  
Toshitake Kohno ◽  
Andrei Pajitnov

AbstractLet 𝒜 be an essential complex hyperplane arrangement in


2002 ◽  
Vol 165 (1) ◽  
pp. 71-100 ◽  
Author(s):  
Stefan Papadima ◽  
Alexander I. Suciu

2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2003 ◽  
Vol 55 (4) ◽  
pp. 822-838 ◽  
Author(s):  
Djun Maximilian Kim ◽  
Dale Rolfsen

AbstractWe define a total ordering of the pure braid groups which is invariant under multiplication on both sides. This ordering is natural in several respects. Moreover, it well-orders the pure braids which are positive in the sense of Garside. The ordering is defined using a combination of Artin's combing technique and the Magnus expansion of free groups, and is explicit and algorithmic.By contrast, the full braid groups (on 3 or more strings) can be ordered in such a way as to be invariant on one side or the other, but not both simultaneously. Finally, we remark that the same type of ordering can be applied to the fundamental groups of certain complex hyperplane arrangements, a direct generalization of the pure braid groups.


Sign in / Sign up

Export Citation Format

Share Document