fibre type
Recently Published Documents


TOTAL DOCUMENTS

552
(FIVE YEARS 41)

H-INDEX

58
(FIVE YEARS 4)

2021 ◽  
Vol 599 (19) ◽  
pp. 4413-4414
Author(s):  
Meral N. Culver ◽  
Sean P. Langan ◽  
Zach J. Hutchison

2021 ◽  
pp. 936-946
Author(s):  
Francesco Lo Monte ◽  
Eduardo J. Mezquida-Alcaraz ◽  
Juan Navarro-Gregori ◽  
Pedro Serna ◽  
Liberato Ferrara

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
David P. McBey ◽  
Michelle Dotzert ◽  
C. W. J. Melling

Abstract Background Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). Purpose: This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. Methods Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. Results The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. Conclusions These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victoria O’Hara ◽  
Amélie Cowan ◽  
Dominique Riddell ◽  
Claire Massey ◽  
John Martin ◽  
...  

AbstractHorse racing is a popular and financially important industry worldwide and researchers and horse owners are interested in genetic and training influences that maximise athletic performance. An association has been found between the presence of a short interspersed nuclear element (SINE) mutation in the myostatin (MSTN) gene promoter and optimal race distance in Thoroughbred horses. There is previous laboratory evidence that this mutation reduces MSTN expression in a cell culture model and influences skeletal muscle fibre type proportions in horses. Manipulating MSTN expression has been proposed for illicit gene doping in human and equine athletes and already, researchers have generated homozygous and heterozygous MSTN-null horse embryos following CRISPR/Cas9 editing at the equine MSTN locus and nuclear transfer, aiming artificially to enhance performance. To date however, the role of the naturally-occurring equine MSTN SINE mutation in vivo has remained unclear; here we hypothesised that it reduces, but does not ablate circulating myostatin expression. Following validation of an ELISA for detection of myostatin in equine serum and using residual whole blood and serum samples from 176 Thoroughbred racehorses under identical management, horses were genotyped for the SINE mutation by PCR and their serum myostatin concentrations measured. In our population, the proportions of SINE homozygotes, heterozygotes and normal horses were 27%, 46% and 27% respectively. Results indicated that horses that are homozygous for the SINE mutation have detectable, but significantly lower (p < 0.0001) serum myostatin concentrations (226.8 pg/ml; 69.3–895.4 pg/ml; median; minimum–maximum) than heterozygous (766 pg/ml; 64.6–1182 pg/ml) and normal horses (1099 pg/ml; 187.8–1743 pg/ml). Heterozygotes have significantly lower (p < 0.0001) myostatin concentrations than normal horses. Variation in serum myostatin concentrations across horses was not influenced by age or sex. This is the first study to reveal the direct functional effect of a highly prevalent mutation in the equine MSTN gene associated with exercise performance. Determining the reason for variation in expression of myostatin within SINE-genotyped groups might identify additional performance-associated environmental or genetic influences in Thoroughbreds. Understanding the mechanism by which altered myostatin expression influences skeletal muscle fibre type remains to be determined.


2021 ◽  
Author(s):  
Victoria O'Hara ◽  
Amelie Cowan ◽  
Dominique Riddell ◽  
Claire Massey ◽  
John Martin ◽  
...  

Abstract Horse racing is a popular and financially important industry worldwide and researchers and horse owners are interested in genetic and training influences that maximise athletic performance. An association has been found between the presence of a short interspersed nuclear element (SINE) mutation in the myostatin (MSTN) gene promoter and optimal race distance in Thoroughbred horses. There is previous laboratory evidence that this mutation reduces MSTN expression in a cell culture model and influences skeletal muscle fibre type proportions in horses. Manipulating MSTN expression has been proposed for illicit gene doping in human and equine athletes and already, researchers have generated homozygous and heterozygous MSTN-null horse embryos following CRISPR/Cas9 editing at the equine MSTN locus and nuclear transfer, aiming artificially to enhance performance. To date however, the role of the naturally-occurring equine MSTN SINE mutation in vivo has remained unclear; here we hypothesised that it reduces, but does not ablate circulating myostatin expression. Following validation of an ELISA for detection of myostatin in equine serum and using residual whole blood and serum samples from 176 Thoroughbred racehorses under identical management, horses were genotyped for the SINE mutation by PCR and their serum myostatin concentrations measured. In our population, the proportions of SINE homozygotes, heterozygotes and normal horses were 27%, 46% and 27% respectively. Results indicated that horses that are homozygous for the SINE mutation have detectable, but significantly lower (p<0.0001) serum myostatin concentrations (226.8pg/ml; 69.3-895.4pg/ml; median; minimum-maximum) than heterozygous (766pg/ml; 64.6-1182pg/ml) and normal horses (1099pg/ml; 187.8-1743pg/ml). Heterozygotes have significantly lower (p<0.0001) myostatin concentrations than normal horses. Variation in serum myostatin concentrations across horses was not influenced by age or sex. This is the first study to reveal the direct functional effect of a highly prevalent mutation in the equine MSTN gene associated with exercise performance. Determining the reason for variation in expression of myostatin within SINE-genotyped groups might identify additional performance-associated environmental or genetic influences in Thoroughbreds. Understanding the mechanism by which altered myostatin expression influences skeletal muscle fibre type remains to be determined.


2021 ◽  
Vol 183 ◽  
pp. 26-32
Author(s):  
Jun Nagasao ◽  
Hanae Fukasawa ◽  
Kazuki Yoshioka ◽  
Miki Miyamoto ◽  
Yuna Iwaki ◽  
...  

Author(s):  
Margret Weissbach ◽  
Marius Neugebauer ◽  
Anna-Christin Joel

AbstractSpider silk attracts researchers from the most diverse fields, such as material science or medicine. However, still little is known about silk aside from its molecular structure and material strength. Spiders produce many different silks and even join several silk types to one functional unit. In cribellate spiders, a complex multi-fibre system with up to six different silks affects the adherence to the prey. The assembly of these cribellate capture threads influences the mechanical properties as each fibre type absorbs forces specifically. For the interplay of fibres, spinnerets have to move spatially and come into contact with each other at specific points in time. However, spinneret kinematics are not well described though highly sophisticated movements are performed which are in no way inferior to the movements of other flexible appendages. We describe here the kinematics for the spinnerets involved in the cribellate spinning process of the grey house spider, Badumna longinqua, as an example of spinneret kinematics in general. With this information, we set a basis for understanding spinneret kinematics in other spinning processes of spiders and additionally provide inspiration for biomimetic multiple fibre spinning.


Sign in / Sign up

Export Citation Format

Share Document