complex hyperplane
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
J F van Diejen ◽  
E Emsiz

Abstract Discrete orthogonality relations for Hall–Littlewood polynomials are employed so as to derive cubature rules for the integration of homogeneous symmetric functions with respect to the density of the circular unitary ensemble (which originates from the Haar measure on the special unitary group $SU(n;\mathbb{C})$). By passing to Macdonald’s hyperoctahedral Hall–Littlewood polynomials, we moreover find analogous cubature rules for the integration with respect to the density of the circular quaternion ensemble (which originates in turn from the Haar measure on the compact symplectic group $Sp (n;\mathbb{H})$). The cubature formulas under consideration are exact for a class of rational symmetric functions with simple poles supported on a prescribed complex hyperplane arrangement. In the planar situations (corresponding to $SU(3;\mathbb{C})$ and $Sp (2;\mathbb{H})$), a determinantal expression for the Christoffel weights enables us to write down compact cubature rules for the integration over the equilateral triangle and the isosceles right triangle, respectively.


2018 ◽  
Vol 70 (2) ◽  
pp. 565-602 ◽  
Author(s):  
Rita Jiménez Rolland ◽  
Jennifer C H Wilson

AbstractIn this paper, we explore a relationship between the topology of the complex hyperplane complements ℳBCn(ℂ) in type B/C and the combinatorics of certain spaces of degree-n polynomials over a finite field Fq. This relationship is a consequence of the Grothendieck trace formula and work of Lehrer and Kim. We use it to prove a correspondence between a representation-theoretic convergence result on the cohomology algebras H*(ℳBCn(ℂ);ℂ), and an asymptotic stability result for certain polynomial statistics on monic squarefree polynomials over Fq with non-zero constant term. This result is the type B/C analogue of a theorem due to Church, Ellenberg, and Farb in type A, and we include a new proof of their theorem. To establish these convergence results, we realize the sequences of cohomology algebras of the hyperplane complements as FIW-algebras finitely generated inFIW-degree 2, and we investigate the asymptotic behaviour of general families of algebras with this structure. We prove a negative result implying that this structure alone is not sufficient to prove the necessary convergence conditions. Our proof of convergence for the cohomology algebras involves the combinatorics of their relators.


2015 ◽  
Vol 27 (4) ◽  
Author(s):  
Toshitake Kohno ◽  
Andrei Pajitnov

AbstractLet 𝒜 be an essential complex hyperplane arrangement in


2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2010 ◽  
Vol 47 (4) ◽  
pp. 513-521
Author(s):  
Shahid Ahmad

We show that for a free complex hyperplane arrangement \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}$$ \end{document}: f = 0, the Poincaré series of the graded Milnor algebra M(f) and the Betti numbers of the arrangement complement M(\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}$$ \end{document}) determine each other. Examples show that this is false if we drop the freeness assumption.


Sign in / Sign up

Export Citation Format

Share Document