scholarly journals Sziklai’s conjecture on the number of points of a plane curve over a finite field II

Author(s):  
Masaaki Homma ◽  
Seon Jeong Kim
Keyword(s):  
2019 ◽  
Vol 19 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Saeed Tafazolian ◽  
Fernando Torres

Abstract Let 𝓧 be the nonsingular model of a plane curve of type yn = f(x) over the finite field F of order q2, where f(x) is a separable polynomial of degree coprime to n. If the number of F-rational points of 𝓧 attains the Hasse–Weil bound, then the condition that n divides q+1 is equivalent to the solubility of f(x) in F; see [20]. In this paper, we investigate this condition for f(x) = xℓ(xm+1).


2019 ◽  
Vol 62 (02) ◽  
pp. 223-230 ◽  
Author(s):  
Shamil Asgarli

AbstractWe prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$ , then there is an $\mathbb{F}_{q}$ -line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$ .


2016 ◽  
Vol 152 (12) ◽  
pp. 2525-2544 ◽  
Author(s):  
Alexei Entin

We prove an analogue of the classical Bateman–Horn conjecture on prime values of polynomials for the ring of polynomials over a large finite field. Namely, given non-associate, irreducible, separable and monic (in the variable$x$) polynomials$F_{1},\ldots ,F_{m}\in \mathbf{F}_{q}[t][x]$, we show that the number of$f\in \mathbf{F}_{q}[t]$of degree$n\geqslant \max (3,\deg _{t}F_{1},\ldots ,\deg _{t}F_{m})$such that all$F_{i}(t,f)\in \mathbf{F}_{q}[t],1\leqslant i\leqslant m$, are irreducible is$$\begin{eqnarray}\displaystyle \biggl(\mathop{\prod }_{i=1}^{m}\frac{\unicode[STIX]{x1D707}_{i}}{N_{i}}\biggr)q^{n+1}(1+O_{m,\,\max \deg F_{i},\,n}(q^{-1/2})), & & \displaystyle \nonumber\end{eqnarray}$$where$N_{i}=n\deg _{x}F_{i}$is the generic degree of$F_{i}(t,f)$for$\deg f=n$and$\unicode[STIX]{x1D707}_{i}$is the number of factors into which$F_{i}$splits over$\overline{\mathbf{F}}_{q}$. Our proof relies on the classification of finite simple groups. We will also prove the same result for non-associate, irreducible and separable (over$\mathbf{F}_{q}(t)$) polynomials$F_{1},\ldots ,F_{m}$not necessarily monic in$x$under the assumptions that$n$is greater than the number of geometric points of multiplicity greater than two on the (possibly reducible) affine plane curve$C$defined by the equation$$\begin{eqnarray}\displaystyle \mathop{\prod }_{i=1}^{m}F_{i}(t,x)=0 & & \displaystyle \nonumber\end{eqnarray}$$(this number is always bounded above by$(\sum _{i=1}^{m}\deg F_{i})^{2}/2$, where$\deg$denotes the total degree in$t,x$) and$$\begin{eqnarray}\displaystyle p=\text{char}\,\mathbf{F}_{q}>\max _{1\leqslant i\leqslant m}N_{i}, & & \displaystyle \nonumber\end{eqnarray}$$where$N_{i}$is the generic degree of$F_{i}(t,f)$for$\deg f=n$.


2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


Sign in / Sign up

Export Citation Format

Share Document