Boundary Estimates for Bergman Polynomials in Domains with Corners

Author(s):  
N. Stylianopoulos
2021 ◽  
Vol 22 (4) ◽  
pp. 171-180
Author(s):  
V. B. Melekhin ◽  
M. V. Khachumov

We formulate the basic principles of constructing a sign-signal control for the expedient behavior of autonomous intelligent agents in a priori undescribed conditions of a problematic environment. We clarify the concept of a self-organizing autonomous intelligent agent as a system capable of automatic goal-setting when a certain type of conditional and unconditional signal — signs appears in a problem environment. The procedures for planning the expedient behavior of autonomous intelligent agents have been developed, that imitate trial actions under uncertainty in the process of studying the regularities of transforming situations in a problem environment, which allows avoiding environmental changes in the process of self-learning that are not related to the achievement of a given goal. Boundary estimates of the proposed procedures complexity for planning expedient behavior are determined, confirming the possibility of their effective implementation on the on-board computer of the automatic control system for the expedient activity of autonomous intelligent agents. We carry out an imitation on a personal computer of the proposed procedures for planning purposeful behavior, confirming the effectiveness of their use to build intelligent problem solvers for autonomous intelligent agents in order to endow them with the ability to adapt to a priori undescribed operating conditions. The main types of connections between various conditional and unconditional signal — signs of a problem environment are structured, which allows autonomous intelligent agents to adapt to complex a priori undescribed and unstable conditions of functioning.


2020 ◽  
Vol 269 (4) ◽  
pp. 3031-3066
Author(s):  
Jun Geng ◽  
Bojing Shi
Keyword(s):  

2018 ◽  
Vol 108 (9) ◽  
pp. 2169-2187 ◽  
Author(s):  
Bernard Helffer ◽  
Ayman Kachmar
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Boniface Nkemzi

The solution fields of Maxwell’s equations are known to exhibit singularities near corners, crack tips, edges, and so forth of the physical domain. The structures of the singular fields are well known up to some undetermined coefficients. In two-dimensional domains with corners and cracks, the unknown coefficients are real constants. However, in three-dimensional domains the unknown coefficients are functions defined along the corresponding edges. This paper proposes explicit formulas for the computation of these coefficients in the case of two-dimensional domains with corners and three-dimensional domains with straight edges. The coefficients of the singular fields along straight edges of three-dimensional domains are represented in terms of Fourier series. The formulas presented are aimed at the numerical approximation of the coefficients of the singular fields. They can also be used for the construction of adaptiveH1-nodal finite-element procedures for the efficient numerical treatment of Maxwell’s equations in nonsmooth domains.


Sign in / Sign up

Export Citation Format

Share Document