Complex multiplication points in Shimura curves

2011 ◽  
Vol 63 (4) ◽  
pp. 826-861 ◽  
Author(s):  
Eric Errthum

Abstract The j-function acts as a parametrization of the classical modular curve. Its values at complex multiplication (CM) points are called singular moduli and are algebraic integers. A Shimura curve is a generalization of the modular curve and, if the Shimura curve has genus 0, a rational parameterizing function exists and when evaluated at a CM point is again algebraic over Q. This paper shows that the coordinate maps given by N. Elkies for the Shimura curves associated to the quaternion algebras with discriminants 6 and 10 are Borcherds lifts of vector-valued modular forms. This property is then used to explicitly compute the rational norms of singular moduli on these curves. This method not only verifies conjectural values for the rational CM points, but also provides a way of algebraically calculating the norms of CM points with arbitrarily large negative discriminant.


Author(s):  
Reinhard Schertz

2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


Author(s):  
Matteo Tamiozzo

AbstractThe aim of this paper is to prove inequalities towards instances of the Bloch–Kato conjecture for Hilbert modular forms of parallel weight two, when the order of vanishing of the L-function at the central point is zero or one. We achieve this implementing an inductive Euler system argument which relies on explicit reciprocity laws for cohomology classes constructed using congruences of automorphic forms and special points on several Shimura curves.


Author(s):  
Anna Gori ◽  
Alberto Verjovsky ◽  
Fabio Vlacci

AbstractMotivated by the theory of complex multiplication of abelian varieties, in this paper we study the conformality classes of flat tori in $${\mathbb {R}}^{n}$$ R n and investigate criteria to determine whether a n-dimensional flat torus has non trivial (i.e. bigger than $${\mathbb {Z}}^{*}={\mathbb {Z}}{\setminus }\{0\}$$ Z ∗ = Z \ { 0 } ) semigroup of conformal endomorphisms (the analogs of isogenies for abelian varieties). We then exhibit several geometric constructions of tori with this property and study the class of conformally equivalent lattices in order to describe the moduli space of the corresponding tori.


2004 ◽  
Vol 160 (2) ◽  
pp. 727-754 ◽  
Author(s):  
Vincent Maillot ◽  
Damian Roessler

Sign in / Sign up

Export Citation Format

Share Document