euler system
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 93)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jeongho Kim ◽  
Bora Moon

<p style='text-indent:20px;'>We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.</p>


2022 ◽  
Vol 60 (1) ◽  
pp. 28-51
Author(s):  
Denise Aregba-Driollet ◽  
Stéphane Brull ◽  
Corentin Prigent

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 470-491
Author(s):  
Ed Clark ◽  
Nikos Katzourakis ◽  
Boris Muha

Abstract We study a minimisation problem in L p and L ∞ for certain cost functionals, where the class of admissible mappings is constrained by the Navier–Stokes equations. Problems of this type are motivated by variational data assimilation for atmospheric flows arising in weather forecasting. Herein we establish the existence of PDE-constrained minimisers for all p, and also that L p minimisers converge to L ∞ minimisers as p → ∞. We further show that L p minimisers solve an Euler–Lagrange system. Finally, all special L ∞ minimisers constructed via approximation by L p minimisers are shown to solve a divergence PDE system involving measure coefficients, which is a divergence-form counterpart of the corresponding non-divergence Aronsson–Euler system.


2021 ◽  
Vol 13 (4) ◽  
pp. 25-33
Author(s):  
Ilinca-Laura BURDULEA ◽  
Alina BOGOI

The topic of this paper is the Kelvin-Helmholtz instability, a phenomenon which occurs on the interface of a stratified fluid, in the presence of a parallel shear flow, when there is a velocity and density difference across the interface of two adjacent layers. This paper focuses on a numerical simulation modelled by the Taylor-Goldstein equation, which represents a more realistic case compared to the basic Kelvin-Helmholtz shear flow. The Euler system is solved with new modelled smooth velocity and density profiles at the interface. The flux at cell boundaries is reconstructed by implementing a third order WENO (Weighted Essentially Non-Oscillatory) method. Next, a Riemann solver builds the fluxes at cell interfaces. The use of both Rusanov and HLLC solvers is investigated. Temporal discretization is done by applying the second order TVD (total variation diminishing) Runge-Kutta method on a uniform grid. Numerical simulations are performed comparatively for both Kelvin-Helmholtz and Taylor-Goldstein instabilities, on the same simulation domains. We find that increasing the number of grid points leads to a better accuracy in shear layer vortices visualization. Thus, we can conclude that applying the Taylor-Goldstein equation improves the realism in the general fluid instability modelling.


Author(s):  
Anna Duyunova ◽  
Valentin Lychagin ◽  
Sergey Tychkov
Keyword(s):  

Author(s):  
Shangkun Weng ◽  
Zhouping Xin ◽  
Hongwei Yuan

This paper concerns the structural stability of smooth cylindrically symmetric transonic flows in a concentric cylinder. Both cylindrical and axi-symmetric perturbations are considered. The governing system here is of mixed elliptic–hyperbolic and changes type and the suitable formulation of boundary conditions at the boundaries is of great importance. First, we establish the existence and uniqueness of smooth cylindrical transonic spiral solutions with nonzero angular velocity and vorticity which are close to the background transonic flow with small perturbations of the Bernoulli’s function and the entropy at the outer cylinder and the flow angles at both the inner and outer cylinders independent of the symmetric axis, and it is shown that in this case, the sonic points of the flow are nonexceptional and noncharacteristically degenerate, and form a cylindrical surface. Second, we also prove the existence and uniqueness of axi-symmetric smooth transonic rotational flows which are adjacent to the background transonic flow, whose sonic points form an axi-symmetric surface. The key elements in our analysis are to utilize the deformation-curl decomposition for the steady Euler system to deal with the hyperbolicity in subsonic regions and to find an appropriate multiplier for the linearized second-order mixed type equations which are crucial to identify the suitable boundary conditions and to yield the important basic energy estimates.


Author(s):  
Young-Pil Choi ◽  
Jinwook Jung

We study an asymptotic analysis of a coupled system of kinetic and fluid equations. More precisely, we deal with the nonlinear Vlasov–Fokker–Planck equation coupled with the compressible isentropic Navier–Stokes system through a drag force in a bounded domain with the specular reflection boundary condition for the kinetic equation and homogeneous Dirichlet boundary condition for the fluid system. We establish a rigorous hydrodynamic limit corresponding to strong noise and local alignment force. The limiting system is a type of two-phase fluid model consisting of the isothermal Euler system and the compressible Navier–Stokes system. Our main strategy relies on the relative entropy argument based on the weak–strong uniqueness principle. For this, we provide a global-in-time existence of weak solutions for the coupled kinetic-fluid system. We also show the existence and uniqueness of strong solutions to the limiting system in a bounded domain with the kinematic boundary condition for the Euler system and Dirichlet boundary condition for the Navier–Stokes system.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Nilasis Chaudhuri

AbstractThe goal of the present paper is to prove that if a weak limit of a consistent approximation scheme of the compressible complete Euler system in full space $$ \mathbb {R}^d,\; d=2,3 $$ R d , d = 2 , 3 is a weak solution of the system, then the approximate solutions eventually converge strongly in suitable norms locally under a minimal assumption on the initial data of the approximate solutions. The class of consistent approximate solutions is quite general and includes the vanishing viscosity and heat conductivity limit. In particular, they may not satisfy the minimal principle for entropy.


2021 ◽  
Vol 387 (2) ◽  
pp. 729-759
Author(s):  
Mahir Hadžić ◽  
Zhiwu Lin

AbstractUpon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960’s Zel’dovich (Voprosy Kosmogonii 9:157–170, 1963) and Harrison et al. (Gravitation Theory and Gravitational Collapse. The University of Chicago press, Chicago, 1965) formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.


Sign in / Sign up

Export Citation Format

Share Document