scholarly journals Essays in the History of Lie Groups and Algebraic Groups

Author(s):  
Armand Borel
2012 ◽  
Vol 430-432 ◽  
pp. 834-837
Author(s):  
Xiao Qiang Guo ◽  
Zheng Jun He

First we introduce the history of group theory. Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry. Secondly, we give the main classes of groups: permutation groups, matrix groups, transformation groups, abstract groups and topological and algebraic groups. Finally, we give two different presentations of a group: combinatorial group theory and geometric group theory.


Author(s):  
Alfonso Di Bartolo ◽  
Giovanni Falcone ◽  
Peter Plaumann ◽  
Karl Strambach
Keyword(s):  

2018 ◽  
Vol 12 (02) ◽  
pp. 267-292
Author(s):  
Romain Tessera ◽  
Alain Valette

A locally compact group [Formula: see text] has property PL if every isometric [Formula: see text]-action either has bounded orbits or is (metrically) proper. For [Formula: see text], say that [Formula: see text] has property BPp if the same alternative holds for the smaller class of affine isometric actions on [Formula: see text]-spaces. We explore properties PL and BPp and prove that they are equivalent for some interesting classes of groups: abelian groups, amenable almost connected Lie groups, amenable linear algebraic groups over a local field of characteristic 0. The appendix provides new examples of groups with property PL, including nonlinear ones.


Author(s):  
Arkadij L. Onishchik ◽  
Ernest B. Vinberg
Keyword(s):  

2017 ◽  
pp. 524-539
Author(s):  
James Carlson ◽  
Stefan Muller-Stach ◽  
Chris Peters
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document