A numerical orthogonalization method for a set of vectors

Geophysics ◽  
2021 ◽  
pp. 1-86
Author(s):  
Wei Chen ◽  
Omar M. Saad ◽  
Yapo Abolé Serge Innocent Oboué ◽  
Liuqing Yang ◽  
Yangkang Chen

Most traditional seismic denoising algorithms will cause damages to useful signals, which are visible from the removed noise profiles and are known as signal leakage. The local signal-and-noise orthogonalization method is an effective method for retrieving the leaked signals from the removed noise. Retrieving leaked signals while rejecting the noise is compromised by the smoothing radius parameter in the local orthogonalization method. It is not convenient to adjust the smoothing radius because it is a global parameter while the seismic data is highly variable locally. To retrieve the leaked signals adaptively, we propose a new dictionary learning method. Because of the patch-based nature of the dictionary learning method, it can adapt to the local feature of seismic data. We train a dictionary of atoms that represent the features of the useful signals from the initially denoised data. Based on the learned features, we retrieve the weak leaked signals from the noise via a sparse co ding step. Considering the large computational cost when training a dictionary from high-dimensional seismic data, we leverage a fast dictionary up dating algorithm, where the singular value decomposition (SVD) is replaced via the algebraic mean to update the dictionary atom. We test the performance of the proposed method on several synthetic and field data examples, and compare it with that from the state-of-the-art local orthogonalization method.


Sign in / Sign up

Export Citation Format

Share Document