soil salinity
Recently Published Documents


TOTAL DOCUMENTS

2000
(FIVE YEARS 885)

H-INDEX

65
(FIVE YEARS 21)

2022 ◽  
Vol 263 ◽  
pp. 107440
Author(s):  
Rui Zong ◽  
Yue Han ◽  
Mingdong Tan ◽  
Ruihan Zou ◽  
Zhenhua Wang

2022 ◽  
Vol 314 ◽  
pp. 108778
Author(s):  
Weishu Wang ◽  
Yao Rong ◽  
Xingwang Wang ◽  
Chaozi Wang ◽  
Chenglong Zhang ◽  
...  

2022 ◽  
Vol 146 ◽  
pp. 293-303
Author(s):  
Adam Yousif Adam Ali ◽  
Muhi Eldeen Hussien Ibrahim ◽  
Guisheng Zhou ◽  
Guanglong Zhu ◽  
Aboagla Mohammed Ibrahim Elsiddig ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Hamza Bouras ◽  
Redouane Choukr-Allah ◽  
Younes Amouaouch ◽  
Ahmed Bouaziz ◽  
Krishna Prasad Devkota ◽  
...  

Soil salinity is a major problem in arid and semi-arid regions, causing land degradation, desertification, and subsequently, food insecurity. Salt-affected soils and phosphorus (P) deficiency are the common problems in the sub-Sahara, including the Southern region of Morocco. Soil salinity limits plant growth by limiting water availability, causing a nutritional imbalance, and imparting osmotic stress in the plants. The objective of this study was to determine the positive effects of P on growth and productivity and understand the major leaf mineral nutrient content of quinoa (Chenopodium quinoa Willd.) cv. “ICBA Q5” irrigated with saline water. A field experiment applying three salinity (Electrical Conductivity, EC) levels of irrigation water (ECw = 5, 12, and 17 dS·m−1) and three P fertilizer rates (0, 60, and 70 kg of P2O5 ha−1) were evaluated in a split-plot design with three replications. The experiment was conducted in Foum El Oued, South of Morocco on sandy loam soil during the period of March–July 2020. The results showed that irrigation with saline water significantly reduced the final dry biomass, seed yield, harvest index, and crop water productivity of quinoa; however, P application under saline conditions minimized the effect of salinity and improved the yield. The application of 60 and 70 kg of P2O5 ha−1 increased (p < 0.05) the seed yield by 29 and 51% at low salinity (5 dS·m−1), by 16 and 2% at medium salinity (12 dS·m−1), and by 13 and 8% at high salinity (17 dS·m−1), respectively. The leaf Na+ and K+ content and Na+/K+ ratio increased with irrigation water salinity. However, the leaf content of Mg, Ca, Zn, and Fe decreased under high salinity. It was also found that increasing P fertilization improved the essential nutrient content and nutrient uptake. Our finding suggests that P application minimizes the adverse effects of high soil salinity and can be adopted as a coping strategy under saline conditions.


2022 ◽  
Vol 14 (2) ◽  
pp. 363
Author(s):  
Nuerbiye Muhetaer ◽  
Ilyas Nurmemet ◽  
Adilai Abulaiti ◽  
Sentian Xiao ◽  
Jing Zhao

In arid and semi-arid areas, timely and effective monitoring and mapping of salt-affected areas is essential to prevent land degradation and to achieve sustainable soil management. The main objective of this study is to make full use of synthetic aperture radar (SAR) polarization technology to improve soil salinity mapping in the Keriya Oasis, Xinjiang, China. In this study, 25 polarization features are extracted from ALOS PALSAR-2 images, of which four features are selected. In addition, three soil salinity inversion models, named the RSDI1, RSDI2, and RSDI3, are proposed. The analysis and comparison results of inversion accuracy show that the overall correlation values of the RSDI1, RSDI2, and RSDI3 models are 0.63, 0.61, and 0.62, respectively. This result indicates that the radar feature space models have the potential to extract information on soil salinization in the Keriya Oasis.


2022 ◽  
Vol 14 (2) ◽  
pp. 347
Author(s):  
Xiaofang Jiang ◽  
Hanchen Duan ◽  
Jie Liao ◽  
Pinglin Guo ◽  
Cuihua Huang ◽  
...  

Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future.


2022 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Rafael Jiménez-Mejía ◽  
Ricardo I. Medina-Estrada ◽  
Santos Carballar-Hernández ◽  
Ma. del Carmen Orozco-Mosqueda ◽  
Gustavo Santoyo ◽  
...  

Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


Sign in / Sign up

Export Citation Format

Share Document