Splitting theorem for Ricci soliton

Author(s):  
Guoqiang Wu

2020 ◽  
Vol 18 (2) ◽  
pp. 163-181
Author(s):  
Santu Dey ◽  
Soumendu Roy


2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri ◽  
Cornelia-Livia Bejan


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59
Author(s):  
Erol Kılıç ◽  
Mehmet Gülbahar ◽  
Ecem Kavuk

Concurrent vector fields lying on lightlike hypersurfaces of a Lorentzian manifold are investigated. Obtained results dealing with concurrent vector fields are discussed for totally umbilical lightlike hypersurfaces and totally geodesic lightlike hypersurfaces. Furthermore, Ricci soliton lightlike hypersurfaces admitting concurrent vector fields are studied and some characterizations for this frame of hypersurfaces are obtained.



1984 ◽  
Vol 49 (1) ◽  
pp. 137-150 ◽  
Author(s):  
M. Lerman ◽  
J. B. Remmel

We say that a pair of r.e. sets B and C split an r.e. set A if B ∩ C = ∅ and B ∪ C = A. Friedberg [F] was the first to study the degrees of splittings of r.e. sets. He showed that every nonrecursive r.e. set A has a splitting into nonrecursive sets. Generalizations and strengthenings of Friedberg's result were obtained by Sacks [Sa2], Owings [O], and Morley and Soare [MS].The question which motivated both [LR] and this paper is the determination of possible degrees of splittings of A. It is easy to see that if B and C split A, then both B and C are Turing reducible to A (written B ≤TA and C ≤TA). The Sacks splitting theorem [Sa2] is a result in this direction, as are results by Lachlan and Ladner on mitotic and nonmitotic sets. Call an r.e. set A mitotic if there is a splitting B and C of A such that both B and C have the same Turing degree as A; A is nonmitotic otherwise. Lachlan [Lac] showed that nonmitotic sets exist, and Ladner [Lad1], [Lad2] carried out an exhaustive study of the degrees of mitotic sets.The Sacks splitting theorem [Sa2] shows that if A is r.e. and nonrecursive, then there are r.e. sets B and C splitting A such that B <TA and C <TA. Since B is r.e. and nonrecursive, we can now split B and continue in this manner to produce infinitely many r.e. degrees below the degree of A which are degrees of sets forming part of a splitting of A. We say that an r.e. set A has the universal splitting property (USP) if for any r.e. set D ≤T A, there is a splitting B and C of A such that B and D are Turing equivalent (written B ≡TD).



Author(s):  
John K. Beem ◽  
Paul E. Ehrlich ◽  
Steen Markvorsen ◽  
Gregory J. Galloway


2016 ◽  
Vol 222 (1) ◽  
pp. 186-209
Author(s):  
RYOSUKE TAKAHASHI

Let $M$ be a Fano manifold. We call a Kähler metric ${\it\omega}\in c_{1}(M)$ a Kähler–Ricci soliton if it satisfies the equation $\text{Ric}({\it\omega})-{\it\omega}=L_{V}{\it\omega}$ for some holomorphic vector field $V$ on $M$. It is known that a necessary condition for the existence of Kähler–Ricci solitons is the vanishing of the modified Futaki invariant introduced by Tian and Zhu. In a recent work of Berman and Nyström, it was generalized for (possibly singular) Fano varieties, and the notion of algebrogeometric stability of the pair $(M,V)$ was introduced. In this paper, we propose a method of computing the modified Futaki invariant for Fano complete intersections in projective spaces.



1986 ◽  
Vol 47 (4) ◽  
pp. 372-375 ◽  
Author(s):  
Gregory J. Galloway
Keyword(s):  


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.



2017 ◽  
Vol 4 (1) ◽  
pp. 179-182 ◽  
Author(s):  
Simone Calamai ◽  
David Petrecca

Abstract In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.





Sign in / Sign up

Export Citation Format

Share Document