The behavior of the infinitesimal Kobayashi pseudometric in deformations and on algebraic manifolds of general type

Author(s):  
Marcus W. Wright
2021 ◽  
pp. 1-16
Author(s):  
Alexander Dabrowski

A variational characterization for the shift of eigenvalues caused by a general type of perturbation is derived for second order self-adjoint elliptic differential operators. This result allows the direct extension of asymptotic formulae from simple eigenvalues to repeated ones. Some examples of particular interest are presented theoretically and numerically for the Laplacian operator for the following domain perturbations: excision of a small hole, local change of conductivity, small boundary deformation.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


1967 ◽  
Vol 3 (9) ◽  
pp. 631-634 ◽  
Author(s):  
I. �. Gel'ms ◽  
V. I. Yuzefovich ◽  
R. N. Yudinson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document