geometrically nonlinear
Recently Published Documents


TOTAL DOCUMENTS

1531
(FIVE YEARS 349)

H-INDEX

55
(FIVE YEARS 10)

2022 ◽  
Vol 202 ◽  
pp. 103697
Author(s):  
A.K.W. Hii ◽  
S. Minera ◽  
R.M.J. Groh ◽  
A. Pirrera ◽  
L.F. Kawashita

2022 ◽  
Author(s):  
Keisuke Otsuka ◽  
Yinan Wang ◽  
Rafael Palacios ◽  
Kanjuro Makihara

2022 ◽  
Author(s):  
Eirikur Jonsson ◽  
Cristina Riso ◽  
Bernardo Bahia Monteiro ◽  
Alasdair C. Gray ◽  
Joaquim R. Martins ◽  
...  

Author(s):  
Laís De Bortoli Lecchi ◽  
Walnório Graça Ferreira ◽  
Paulo Manuel Mendes Pinheiro da Providência e Costa ◽  
Arlene Maria Cunha Sarmanho

abstract: Current practices in structural engineering demand ever-increasing knowledge and expertise concerning stability of structures from professionals in this field. This paper implements standardized procedures for geometrically nonlinear analysis of steel and reinforced concrete structures, with the objective of comparing methodologies with one another and with a geometrically exact finite element analysis performed with Ansys 14.0. The following methods are presented in this research: Load Amplification Method, from NBR 8800:2008; the γ z coefficient method, from NBR 6118:2014; the P-Delta iterative method and the α c r coefficient method, prescribed in EN 1993-1-1:2005. A bibliographic review focused on standardized approximate methods and models for consideration of material and geometric nonlinearities is presented. Numerical examples are included, from which information is gathered to ensure a valid comparison between methodologies. In summary, the presented methods show a good correlation of results when applied within their respective recommended applicability limits, of which, Eurocode 3 seems to present the major applicability range. The treated approximate methods show to be more suitable for regular framed structures subjected to regular load distributions.


Author(s):  
Gaik A. Manuylov ◽  
Sergey B. Kositsyn ◽  
Irina E. Grudtsyna

The aims of this work are a detailed consideration in a geometrically nonlinear formulation of the stages of the equilibrium behavior of a compressed stiffened plate, taking into account the interaction of the general form of buckling and local forms of wave formation in the plate or in the reinforcing ribs, comparison of the results of the semi-analytical solution of the system of nonlinear equations with the results of the numerical solution on the Patran-Nastran FEM complex of the problem of subcritical and postcritical equilibrium of a compressed stiffened plate. Methods. Geometrically-nonlinear analysis of displacement fields, deformations and stresses, calculation of eigenforms of buckling and construction of bifurcation solutions and solutions for equilibrium curves with limit points depending on the initial imperfections. An original method is proposed for determining critical states and obtaining bilateral estimates of critical loads at limiting points. Results. An algorithm for studying the equilibrium states of a stiffened plate near critical points is described in detail and illustrated by examples, using the first nonlinear (cubic terms) terms of the potential energy expansion, the coordinates of bifurcation points and limit points, as well as the corresponding values of critical loads. The curves of the critical load sensitivity are plotted depending on the value of the initial imperfections of the total deflection. Equilibrium curves with characteristic bifurcation points of local wave formation are constructed using a numerical solution. For the case of action of two initial imperfections, an algorithm is proposed for obtaining two-sided estimates of critical loads at limiting points.


Sign in / Sign up

Export Citation Format

Share Document