scholarly journals The normal index of a maximal subgroup of a finite group

1989 ◽  
Vol 106 (1) ◽  
pp. 25-25 ◽  
Author(s):  
N. P. Mukherjee ◽  
Prabir Bhattacharya
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


1970 ◽  
Vol 2 (2) ◽  
pp. 267-274
Author(s):  
John Poland

If G is a finite group and P is a group-theoretic property, G will be called P-max-core if for every maximal subgroup M of G, M/MG has property P where MG = ∩ is the core of M in G. In a joint paper with John D. Dixon and A.H. Rhemtulla, we showed that if p is an odd prime and G is (p-nilpotent)-max-core, then G is p-solvable, and then using the techniques of the theory of solvable groups, we characterized nilpotent-max-core groups as finite nilpotent-by-nilpotent groups. The proof of the first result used John G. Thompson's p-nilpotency criterion and hence required p > 2. In this paper I show that supersolvable-max-core groups (and hence (2-nilpotent)-max-core groups) need not be 2-solvable (that is, solvable). Also I generalize the second result, among others, and characterize (p-nilpotent)-max-core groups (for p an odd prime) as finite nilpotent-by-(p-nilpotent) groups.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850119
Author(s):  
Jiangtao Shi

In this paper, we prove that if every non-nilpotent maximal subgroup of a finite group [Formula: see text] has prime index then [Formula: see text] has a Sylow tower.


2011 ◽  
Vol 53 (2) ◽  
pp. 401-410 ◽  
Author(s):  
LONG MIAO

AbstractA subgroup H is called weakly -supplemented in a finite group G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal subgroup of G contained in H. In this paper we will prove the following: Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 ⊴ E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement or weak -supplement in G, then G is p-nilpotent.


2011 ◽  
Vol 84 (3) ◽  
pp. 408-413 ◽  
Author(s):  
CLARA FRANCHI

AbstractFor a finite group G, we denote by μ(G) the minimum degree of a faithful permutation representation of G. We prove that if G is a finite p-group with an abelian maximal subgroup, then μ(G/G′)≤μ(G).


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.


Sign in / Sign up

Export Citation Format

Share Document