scholarly journals Finite Groups with All Maximal Subgroups of Prime or Prime Square Index

1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.

2014 ◽  
Vol 13 (05) ◽  
pp. 1350148
Author(s):  
WEI MENG ◽  
JIAKUAN LU

Let G be a finite group. A subgroup H of G is called an ℋ-subgroup of G if NG(H) ∩ Hg ≤ H for all g ∈ G; G is said to be an ℋp-group if every cyclic subgroup of G of prime order or order 4 is an ℋ-subgroup of G. In this paper, the structure of the finite groups all of whose maximal subgroups of even order are ℋp-subgroups have been characterized.


2020 ◽  
Vol 27 (04) ◽  
pp. 661-668
Author(s):  
A.M. Elkholy ◽  
M.H. Abd-Ellatif

Let G be a finite group and H a subgroup of G. We say that H is S-permutable in G if H permutes with every Sylow subgroup of G. A group G is called a generalized smooth group (GS-group) if [G/L] is totally smooth for every subgroup L of G of prime order. In this paper, we investigate the structure of G under the assumption that each subgroup of prime order is S-permutable if the maximal subgroups of G are GS-groups.


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.


2018 ◽  
Vol 25 (04) ◽  
pp. 579-584
Author(s):  
Chi Zhang ◽  
Wenbin Guo ◽  
Natalia V. Maslova ◽  
Danila O. Revin

For a positive integer n, we denote by π(n) the set of all prime divisors of n. For a finite group G, the set [Formula: see text] is called the prime spectrum of G. Let [Formula: see text] mean that M is a maximal subgroup of G. We put [Formula: see text] and [Formula: see text]. In this notice, using well-known number-theoretical results, we present a number of examples to show that both K(G) and k(G) are unbounded in general. This implies that the problem “Are k(G) and K(G) bounded by some constant k?”, raised by Monakhov and Skiba in 2016, is solved in the negative.


2014 ◽  
Vol 57 (3) ◽  
pp. 648-657 ◽  
Author(s):  
Juping Tang ◽  
Long Miao

AbstractLet G be a finite group and let ℱ be a class of groups. Then Zℱϕ(G) is the ℱϕ-hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are ℱ-central in G. A subgroup H is called ℳ-supplemented in a finite group G if there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H. The main purpose of this paper is to prove the following: Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of F*(E) has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is 𝓜-supplemented in G, then E ≤ Zuϕ(G).


2017 ◽  
Vol 16 (11) ◽  
pp. 1750217
Author(s):  
Tianze Li ◽  
Yanjun Liu ◽  
Guohua Qian

Let [Formula: see text] be a finite group and [Formula: see text] be a prime. In this note, we show that if [Formula: see text] and all subgroups of [Formula: see text] of order [Formula: see text] are conjugate, then either [Formula: see text] has a [Formula: see text]-block of defect zero, or [Formula: see text] and [Formula: see text] is a direct product of a simple group [Formula: see text] and an odd order group. This improves one of our previous works.


2020 ◽  
Vol 8 ◽  
Author(s):  
ANDREA LUCCHINI ◽  
CLAUDE MARION ◽  
GARETH TRACEY

For a finite group $G$ , let $d(G)$ denote the minimal number of elements required to generate $G$ . In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.


2009 ◽  
Vol 08 (02) ◽  
pp. 229-242 ◽  
Author(s):  
ZHENCAI SHEN ◽  
SHIRONG LI ◽  
WUJIE SHI

A subgroup H of G is said to be self-conjugate-permutable if HHx = HxH implies Hx = H. A finite group G is called PSC-group if every cyclic subgroup of group G of prime order or order 4 is self-conjugate-permutable. In the paper, first we give the structure of finite group G, all of whose maximal subgroups are PSC-groups. Then we also classified that finite group G all of whose second maximal subgroups are PSC-groups.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950087
Author(s):  
Xiaolan Yi ◽  
Shiyang Jiang ◽  
S. F. Kamornikov

The subgroup structure of a finite group, under the assumption that its every non-nilpotent maximal subgroup has prime index, is studied in the paper.


Sign in / Sign up

Export Citation Format

Share Document