scholarly journals The spectral sequence of a finite group extension stops

1975 ◽  
Vol 212 ◽  
pp. 269-269 ◽  
Author(s):  
Leonard Evens
2020 ◽  
Vol 71 (2) ◽  
pp. 703-728
Author(s):  
Tiberiu Coconeţ ◽  
Andrei Marcus ◽  
Constantin-Cosmin Todea

Abstract Let $(\mathcal{K},\mathcal{O},k)$ be a $p$-modular system where $p$ is a prime and $k$ algebraically closed, let $b$ be a $G$-invariant block of the normal subgroup $H$ of a finite group $G$, having defect pointed group $Q_\delta$ in $H$ and $P_\gamma$ in $G$ and consider the block extension $b\mathcal{O}G$. One may attach to $b$ an extended local category $\mathcal{E}_{(b,H,G)}$, a group extension $L$ of $Z(Q)$ by $N_G(Q_\delta )/C_H(Q)$ having $P$ as a Sylow $p$-subgroup, and a cohomology class $[\alpha ]\in H^2(N_G(Q_\delta )/QC_H(Q),k^\times )$. We prove that these objects are invariant under the $G/H$-graded basic Morita equivalences. Along the way, we give alternative proofs of the results of Külshammer and Puig (1990), and Puig and Zhou (2012) on extensions of nilpotent blocks. We also deduce by our methods a result of Zhou (2016) on $p^{\prime}$-extensions of inertial blocks.


1961 ◽  
Vol 57 (4) ◽  
pp. 731-733 ◽  
Author(s):  
C. T. C. Wall

Recent work of Atiyah (1) on the Grothendieck rings of classifying spaces of finite groups has yielded, among many other interesting results, a spectral sequence relating the simple integer cohomology of a finite group to its representation ring. He has determined the first differential operator of the spectral sequence which affects the p-part of the cohomology, and the question naturally arises, when is it the only non-zero one. My object in this note is to show that this is so for a large class of groups.


Author(s):  
YANJUN LIU ◽  
WOLFGANG WILLEMS

Abstract Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$ , where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


2021 ◽  
Vol 58 (2) ◽  
pp. 335-346
Author(s):  
Mackenzie Simper

AbstractConsider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


Sign in / Sign up

Export Citation Format

Share Document