scholarly journals Resolution of singularities and modular Galois theory

2000 ◽  
Vol 38 (02) ◽  
pp. 131-170 ◽  
Author(s):  
Shreeram S. Abhyankar
Author(s):  
Julio R. Bastida ◽  
Roger Lyndon

1972 ◽  
pp. 243-266
Author(s):  
R. Kochendörffer
Keyword(s):  

2003 ◽  
Vol 86 (2) ◽  
pp. 327-357 ◽  
Author(s):  
A. BRAVO ◽  
O. VILLAMAYOR U.

Let $X$ be a closed subscheme embedded in a scheme $W$, smooth over a field ${\bf k}$ of characteristic zero, and let ${\mathcal I} (X)$ be the sheaf of ideals defining $X$. Assume that the set of regular points of $X$ is dense in $X$. We prove that there exists a proper, birational morphism, $\pi : W_r \longrightarrow W$, obtained as a composition of monoidal transformations, so that if $X_r \subset W_r$ denotes the strict transform of $X \subset W$ then:(1) the morphism $\pi : W_r \longrightarrow W$ is an embedded desingularization of $X$ (as in Hironaka's Theorem);(2) the total transform of ${\mathcal I} (X)$ in ${\mathcal O}_{W_r}$ factors as a product of an invertible sheaf of ideals ${\mathcal L}$ supported on the exceptional locus, and the sheaf of ideals defining the strict transform of $X$ (that is, ${\mathcal I}(X){\mathcal O}_{W_r} = {\mathcal L} \cdot {\mathcal I}(X_r)$).Thus (2) asserts that we can obtain, in a simple manner, the equations defining the desingularization of $X$.2000 Mathematical Subject Classification: 14E15.


2004 ◽  
Vol 45 (3-4) ◽  
pp. 349-358 ◽  
Author(s):  
Angel Popescu ◽  
Nicolae Popescu ◽  
Alexandru Zaharescu

2008 ◽  
Vol 319 (2) ◽  
pp. 779-799 ◽  
Author(s):  
Everett C. Dade

Sign in / Sign up

Export Citation Format

Share Document