Bessel sequences with finite upper density in de Branges spaces

2016 ◽  
Vol 27 (4) ◽  
pp. 599-607
Author(s):  
Yu. Belov
2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


2010 ◽  
Vol 88 (2) ◽  
pp. 145-167 ◽  
Author(s):  
I. CHYZHYKOV ◽  
J. HEITTOKANGAS ◽  
J. RÄTTYÄ

AbstractNew estimates are obtained for the maximum modulus of the generalized logarithmic derivatives f(k)/f(j), where f is analytic and of finite order of growth in the unit disc, and k and j are integers satisfying k>j≥0. These estimates are stated in terms of a fixed (Lindelöf) proximate order of f and are valid outside a possible exceptional set of arbitrarily small upper density. The results obtained are then used to study the growth of solutions of linear differential equations in the unit disc. Examples are given to show that all of the results are sharp.


Author(s):  
Dongwei Li ◽  
Jinsong Leng ◽  
Tingzhu Huang

In this paper, we give some new characterizations of g-frames, g-Bessel sequences and g-Riesz bases from their topological properties. By using the Gram matrix associated with the g-Bessel sequence, we present a sufficient and necessary condition under which the sequence is a g-Bessel sequence (or g-Riesz basis). Finally, we consider the excess of a g-frame and obtain some new results.


2010 ◽  
Vol 201 (11) ◽  
pp. 1599-1634 ◽  
Author(s):  
Gennady M Gubreev ◽  
Anna A Tarasenko

2015 ◽  
pp. 489-523 ◽  
Author(s):  
Harald Woracek
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


Sign in / Sign up

Export Citation Format

Share Document