Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces

Author(s):  
Hanen Ellouz
2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


2013 ◽  
Vol 21 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Asghar Rahimi ◽  
Abolhassan Fereydooni

Abstract Multipliers have been recently introduced by P. Balazs as operators for Bessel sequences and frames in Hilbert spaces. These are opera- tors that combine (frame-like) analysis, a multiplication with a fixed sequence ( called the symbol) and synthesis. One of the last extensions of frames is weighted and controlled frames that introduced by P.Balazs, J-P. Antoine and A. Grybos to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Also g-frames are the most popular generalization of frames that include almost all of the frame extensions. In this manuscript the concept of the controlled g- frames will be defined and we will show that controlled g-frames are equivalent to g-frames and so the controlled operators C and C' can be used as preconditions in applications. Also the multiplier operator for this family of operators will be introduced and some of its properties will be shown.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 141 ◽  
Author(s):  
Zhong-Qi Xiang

In this paper, we present several new inequalities for weaving frames in Hilbert spaces from the point of view of operator theory, which are related to a linear bounded operator induced by three Bessel sequences and a scalar in the set of real numbers. It is indicated that our results are more general and cover the corresponding results recently obtained by Li and Leng. We also give a triangle inequality for weaving frames in Hilbert spaces, which is structurally different from previous ones.


2014 ◽  
Vol 54 (1) ◽  
pp. 87-94
Author(s):  
Mohammad Reza Abdollahpour ◽  
Abbas Najati

Author(s):  
Z. L. Chen ◽  
H. X. Cao ◽  
Z. H. Guo

For Hilbert spaces [Formula: see text] and [Formula: see text], we use the notations [Formula: see text], [Formula: see text] and [Formula: see text] to denote the sets of all [Formula: see text]-Bessel sequences, [Formula: see text]-frames and Riesz bases in [Formula: see text] with respect to [Formula: see text], respectively. By defining a linear operation and a norm, we prove that [Formula: see text] becomes a Banach space and is isometrically isomorphic to the operator space [Formula: see text], where [Formula: see text]. In light of operator theory, it is proved that [Formula: see text] and [Formula: see text] are open sets in [Formula: see text]. This implies that both [Formula: see text]-frames and Riesz bases are stable under a small perturbation. By introducing a linear bijection [Formula: see text] from [Formula: see text] onto the [Formula: see text]-algebra [Formula: see text], a multiplication and an involution on the Banach space [Formula: see text] are defined so that [Formula: see text] becomes a unital [Formula: see text]-algebra that is isometrically isomorphic to the [Formula: see text]-algebra [Formula: see text], provided that [Formula: see text] and [Formula: see text] are isomorphic.


Author(s):  
PETER BALAZS

In this paper we deal with the theory of Hilbert–Schmidt operators, when the usual choice of orthonormal basis, on the associated Hilbert spaces, is replaced by frames. We More precisely, we provide a necessary and sufficient condition for an operator to be Hilbert–Schmidt, based on its action on the elements of a frame (i.e. an operator T is [Formula: see text] if and only if the sum of the squared norms of T applied on the elements of the frame is finite). Also, we construct Bessel sequences, frames and Riesz bases of [Formula: see text] operators using tensor products of the same sequences in the associated Hilbert spaces. We state how the [Formula: see text] inner product of an arbitrary operator and a rank one operator can be calculated in an efficient way; and we use this result to provide a numerically efficient algorithm to find the best approximation, in the Hilbert–Schmidt sense, of an arbitrary matrix, by a so-called frame multiplier (i.e. an operator which act diagonally on the frame analysis coefficients). Finally, we give some simple examples using Gabor and wavelet frames, introducing in this way wavelet multipliers.


Author(s):  
Prasenjit Ghosh ◽  
Tapas Kumar Samanta

We present controlled by operators generalized fusion frame in the tensor product of Hilbert spaces and discuss some of its properties. We also describe the frame operator for a pair of controlled $g$-fusion Bessel sequences in the tensor product of Hilbert spaces.


2020 ◽  
Vol 21 (2) ◽  
pp. 563
Author(s):  
Esmaeil Alizadeh ◽  
Asghar Rahimi ◽  
Mortaza Rahmani

Sign in / Sign up

Export Citation Format

Share Document