6 Polynomial Congruences and Primitive Roots

1990 ◽  
Vol 45 (1) ◽  
pp. 223-224 ◽  
Author(s):  
G I Perel'muter ◽  
I E Shparlinskii

2012 ◽  
Vol 08 (03) ◽  
pp. 613-629 ◽  
Author(s):  
ADAM TYLER FELIX

Let a be a natural number different from 0. In 1963, Linnik proved the following unconditional result about the Titchmarsh divisor problem [Formula: see text] where c is a constant dependent on a. Titchmarsh proved the above result assuming GRH for Dirichlet L-functions in 1931. We establish the following asymptotic relation: [Formula: see text] where Ck is a constant dependent on k and a, and the implied constant is dependent on k. We also apply it a question related to Artin's conjecture for primitive roots.


2013 ◽  
Vol 89 (2) ◽  
pp. 300-307
Author(s):  
IGOR E. SHPARLINSKI

AbstractWe use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems of congruences modulo a prime $p$. In particular, we obtain nontrivial results about the number of solutions in boxes with the side length below ${p}^{1/ 2} $, which seems to be the limit of more general methods based on the bounds of exponential sums along varieties.


1952 ◽  
Vol 19 (3) ◽  
pp. 459-469 ◽  
Author(s):  
L. Carlitz
Keyword(s):  

2008 ◽  
Vol 8 (1&2) ◽  
pp. 147-180
Author(s):  
P. Wocjan ◽  
J. Yard

We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al.\ that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-complete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a \#P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.


Sign in / Sign up

Export Citation Format

Share Document