natural number
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 130)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
M. Ram Murty ◽  
V Kumar Murty

For each natural number $n$, we define $\omega^*(n)$ to be the number of primes $p$ such that $p-1$ divides $n$. We show that in contrast to the Hardy-Ramanujan theorem which asserts that the number $\omega(n)$ of prime divisors of $n$ has a normal order $\log\log n$, the function $\omega^*(n)$ does not have a normal order. We conjecture that for some positive constant $C$, $$\sum_{n\leq x} \omega^*(n)^2 \sim Cx(\log x). $$ Another conjecture related to this function emerges, which seems to be of independent interest. More precisely, we conjecture that for some constant $C>0$, as $x\to \infty$, $$\sum_{[p-1,q-1]\leq x} {1 \over [p-1, q-1]} \sim C \log x, $$ where the summation is over primes $p,q\leq x$ such that the least common multiple $[p-1,q-1]$ is less than or equal to $x$.


2021 ◽  
Vol 34 (06) ◽  
pp. 1885-1891
Author(s):  
Anna V. Ermakova

This article discusses the application of fuzzy mathematics for choosing time windows for the maintenance of non-public railway tracks. The design features of several stations and the points of junction of non-public railway tracks lead to hostile routes in the leads of the station. Moving the switching fleet through the neck creates hostility to the train route. To determine the optimal maintenance interval of non-public railway tracks, aimed at excluding hostility, it is necessary to know the throughput reserve of the railroad neck element in a certain time window. To localize the throughput reserve, it is proposed to divide the day into 30-minute intervals. This division will allow determining more accurately both the throughput reserve of the railroad neck element and the periods for servicing non-public railway tracks. The most appropriate way to calculate the throughput reserve is to use fuzzy numbers since this method allows taking into account the unequal capabilities of values within the intervals. Using the defuzzification procedure, a natural number is assigned to a given fuzzy number. After carrying out the defuzzification of the throughput reserve, the obtained values can be used to build an algorithm for selecting service intervals for non-public railway tracks.


2021 ◽  
Author(s):  
Jorge Crespo Alvarez

In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that Collatz's Conjecture is a consequence. We found that every natural number n_i∈N can be calculated starting from 1, using the function n_i=((2^(i-Ω)-C))⁄3^Ω , where: i≥0 represents the number of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to n_i, Ω≥0 represents the number of multiplications by three required and 0≤C≤2^(i-⌊i/3⌋ )-2^((i mod 3)) 3^⌊i/3⌋ is an accumulative constant that takes into account the order in which the operations of multiplication and division have been performed. Reversing the inversion, we have obtained the function: ((3^Ω n_i+C))⁄2^(i-Ω)=1 that proves that Collatz Conjecture it’s a consequence of the above and also proofs that Collatz Conjecture it’s true since ((3^Ω n_i+C))⁄2^(i-Ω) is the recursive form of the Collatz’s function.


2021 ◽  
Vol 15 (4) ◽  
pp. 651-658
Author(s):  
Deddy Setyawan ◽  
Anis Nur Afni ◽  
Rafiantika Megahnia Prihandini ◽  
Ermita Rizki Albirri ◽  
Arika Indah Kristiana

The local antimagic total vertex labeling of graph G is a labeling that every vertices and edges label by natural number from 1 to  such that every two adjacent vertices has different weights, where is The sum of a vertex label and the labels of all edges that incident to the vertex. If the labeling start the smallest label from the vertex  then the edge  so that kind of coloring is called the local super antimagic total vertex labeling. That local super antimagic total vertex labeling induces vertex coloring of graph G where for vertex v, the weight  w(v) is the color of  v. The minimum number of colors that obtained by coloring that induces by local super antimagic total vertex labeling of G called the chromatic number of local super antimagic total vertex coloring of G, denoted by χlsat(G). In this paper, we consider the chromatic number of local super antimagic total vertex coloring of Generalized Petersen Graph P(n,k) for k=1, 2.


2021 ◽  
Vol 27 (4) ◽  
pp. 90-94
Author(s):  
Jun Ikeda ◽  
◽  
Junsei Kochiya ◽  
Takato Ui ◽  
◽  
...  

Linas Vepštas gives rapidly converging infinite representatives for values of Riemann zeta function at \left(4m-1 \right), where m is a natural number. In this paper, we give a new simple proof. Also, we obtain two equation of values of Bernoulli numbers’ generating function by applying a corollary given in this paper.


2021 ◽  
Author(s):  
Jorge Crespo Alvarez

In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that Collatz's Conjecture is a consequence. We found that every natural number n_i∈N can be calculated starting from 1, using the function n_i=((2^(i-Ω)-C))⁄3^Ω , where: i≥0 represents the number of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to n_i, Ω≥0 represents the number of multiplications by three required and 0≤C≤2^(i-⌊i/3⌋ )-2^((i mod 3)) 3^⌊i/3⌋ is an accumulative constant that takes into account the order in which the operations of multiplication and division have been performed. Reversing the inversion, we have obtained the function: ((3^Ω n_i+C))⁄2^(i-Ω)=1 that proves that Collatz Conjecture it’s a consequence of the above and also proofs that Collatz Conjecture it’s true since ((3^Ω n_i+C))⁄2^(i-Ω) is the recursive form of the Collatz’s function.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serik Altynbek ◽  
Heinrich Begehr

Abstract Double sequences appear in a natural way in cases of iteratively given sequences if the iteration allows to determine besides the successors from the predecessors also the predecessors from their followers. A particular pair of double sequences is considered which appears in a parqueting-reflection process of the complex plane. While one end of each sequence is a natural number sequence, the other consists of rational numbers. The natural numbers sequences are not yet listed in OEIS Wiki. Complex versions from the double sequences are provided.


2021 ◽  
Author(s):  
Karenleigh A. Overmann ◽  
Thomas Wynn ◽  
Frederick L. Coolidge

Carey leaves unaddressed an important evolutionary puzzle: In the absence of a numeral list, how could a concept of natural number ever have arisen in the first place? Here we suggest that the initial development of natural number must have bootstrapped on a material culture scaffold of some sort, and illustrate how this might have occurred using strings of beads.


2021 ◽  
Vol 56 (1) ◽  
pp. 20-27
Author(s):  
A.V. Ravsky ◽  
T.O. Banakh

Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\'anchez.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2691
Author(s):  
Anak Nongmanee ◽  
Sorasak Leeratanavalee

Let n be a fixed natural number. Ternary Menger algebras of rank n, which was established by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article, we introduce the notion of v-regular ternary Menger algebras of rank n, which can be considered as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting properties. Based on the concept of n-place functions (n-ary operations), these lead us to construct ternary Menger algebras of rank n of all full n-place functions. Finally, we study a special class of full n-place functions, the so-called left translations. In particular, we investigate a relationship between the concept of full n-place functions and left translations


Sign in / Sign up

Export Citation Format

Share Document